@misc{Huening2024, author = {H{\"u}ning, Felix}, title = {Positionssensorvorrichtung}, year = {2024}, abstract = {Die Erfindung betrifft eine Positionssensorvorrichtung zur Bestimmung einer Absolutposition eines beweglichen ersten Teils relativ zu einem ortsfesten zweiten Teil mit einem mit dem beweglichen ersten Teil gekoppelter Codek{\"o}rper, der dazu eingerichtet ist, eine Codespur mit einer Mehrzahl von in Spurrichtung aufeinanderfolgenden Codeelementen zu enthalten zur Bildung eines Codewortes, mit einer magnetischen Detektionseinrichtung zur Detektion der Codespur, wobei die Detektionseinrichtung zum einen an dem Codek{\"o}rper befestigte und entlang der Spurrichtung in einem solchen Abstand gegenpolig zueinander angeordnete Permanentmagneten aufweist, dass der Abstand mit einer vorgegebenen L{\"a}nge der jeweiligen Codeelemente {\"u}bereinstimmt, und zum anderen eine Anzahl von ortsfest und quer zu dem Codek{\"o}rper versetzt angeordnete Wiegandsensoren aufweist, wobei der Abstand des Wiegandsensors zu einer Erstreckungsebene der Permanentmagneten derart gew{\"a}hlt ist, dass bei {\"U}berdeckung des Wiegandsensors durch den Permanentmagneten ein Wiegandpuls in dem Wiegandsensor induziert wird.}, language = {de} } @misc{BragardHueningKowalewski2023, author = {Bragard, Michael and H{\"u}ning, Felix and Kowalewski, Paul}, title = {Vorrichtung zur Relativlagenbestimmung [Offenlegungschrift]}, year = {2023}, abstract = {Die Erfindung betrifft eine Vorrichtung zur Bestimmung einer Relativlage zwischen einem feststehenden Teil und einem zu demselben in eine Bewegungsrichtung bewegbaren beweglichen Teil, wobei der feststehende Teil mit einem Wiegandsensor versehen ist, wobei der Wiegandsensor zwischen zwei gegenpolig zueinander ausgebildeten Permanentmagneten angeordnet ist und dass der bewegliche Teil eine Mehrzahl von beabstandet zueinander angeordneten Magnetisierungsstegen aus einem magnetisch leitenden Material aufweist, die in der Bewegungsrichtung zumindest eine gleich große Erstreckung aufweisen wie der Permanentmagnet, dass ein Abstand zwischen benachbarten Magnetisierungsstegen derart gew{\"a}hlt ist, dass in einer ersten Relativlage ein erster Permanentmagnet von einem der Magnetisierungsstege {\"u}berdeckt ist und ein zweiter Permanentmagnet nicht von einem der Magnetisierungsstege {\"u}berdeckt ist.}, language = {de} } @inproceedings{HueningMund2023, author = {H{\"u}ning, Felix and Mund, Cindy}, title = {Integration of agile development in standard labs}, series = {51st Annual Conference of the European Society for Engineering Education (SEFI)}, booktitle = {51st Annual Conference of the European Society for Engineering Education (SEFI)}, doi = {10.21427/NK4Z-WS73}, pages = {11 Seiten}, year = {2023}, abstract = {In addition to the technical content, modern courses at university should also teach professional skills to enhance the competencies of students towards their future work. The competency driven approach including technical as well as professional skills makes it necessary to find a suitable way for the integration into the corresponding module in a scalable and flexible manner. Agile development, for example, is essential for the development of modern systems and applications and makes use of dedicated professional skills of the team members, like structured group dynamics and communication, to enable the fast and reliable development. This paper presents an easy to integrate and flexible approach to integrate Scrum, an agile development method, into the lab of an existing module. Due to the different role models of Scrum the students have an individual learning success, gain valuable insight into modern system development and strengthen their communication and organization skills. The approach is implemented and evaluated in the module Vehicle Systems, but it can be transferred easily to other technical courses as well. The evaluation of the implementation considers feedback of all stakeholders, students, supervisor and lecturers, and monitors the observations during project lifetime.}, language = {en} } @misc{Huening2023, author = {H{\"u}ning, Felix}, title = {Sensorvorrichtung zur Erfassung eines Magnetfelds sowie magnetbasiertes Sensorsystem zur Erfassung einer Bewegung eines beweglichen Objekts}, year = {2023}, abstract = {Eine Sensorvorrichtung (10;110;210;310;410) zur Erfassung eines Magnetfelds, mit einer Wiegand-Sensoreinheit (12;112;212) umfassend: • - mindestens zwei Wiegand-Dr{\"a}hte (20) und • - eine Spulenanordnung (22;122;222), die die mindestens zwei Wiegand-Dr{\"a}hte (20) radial umschließt und die • • • ein Sensorelement (26;126;226) und • • ein Triggerelement (28;128;228), durch das ein Triggermagnetfeld erzeugbar ist, bildet, ist bekannt. Um ein magnetbasiertes Sensorsystem (300;400) zur Erfassung einer Bewegung eines beweglichen Objekts (301;401) zu erm{\"o}glichen, das ohne externe Energieversorgung zuverl{\"a}ssig sowie energieeffizient arbeitet und kosteng{\"u}nstig hergestellt werden kann, ist bei der erfindungsgem{\"a}ßen Sensorvorrichtung (10;110;210;310;410) eine Wiegand-Triggereinheit (14;14a) vorhanden, umfassend: • - einen Wiegand-Draht (30) und • - eine Trigger-Sensorspule (32), die den Wiegand-Draht (30) radial umschließt, wobei ein erstes Ende der Trigger-Sensorspule (32) der Wiegand-Triggereinheit (14;14a) mit einem ersten Ende des Triggerelements (28;128;228) der Wiegand-Sensoreinheit (12;112;212) elektrisch verbunden ist und ein zweites Ende der Trigger-Sensorspule (32) der Wiegand-Triggereinheit (14;14a) mit einem zweiten Ende des Triggerelements (28;128;228) der Wiegand-Sensoreinheit (12;112;212) elektrisch verbunden ist. Auf diese Weise verst{\"a}rkt ein in der Trigger-Sensorspule (32) erzeugter Impuls das Gesamtmagnetfeld, das auf die Wiegand-Dr{\"a}hte (20) in der Sensoreinheit einwirkt, derart, dass die Triggefeldst{\"a}rke aller Wiegand-Dr{\"a}hte (20) {\"u}berschritten wird und diese im wesentlichen zeitgleich ausl{\"o}sen.}, language = {de} } @article{KowalewskiBragardHueningetal.2023, author = {Kowalewski, Paul and Bragard, Michael and H{\"u}ning, Felix and De Doncker, Rik W.}, title = {An inexpensive Wiegand-sensor-based rotary encoder without rotating magnets for use in electrical drives}, series = {IEEE Transactions on Instrumentation and Measurement}, journal = {IEEE Transactions on Instrumentation and Measurement}, publisher = {IEEE}, issn = {0018-9456 (Print)}, doi = {10.1109/TIM.2023.3326166}, pages = {10 Seiten}, year = {2023}, abstract = {This paper introduces an inexpensive Wiegand-sensor-based rotary encoder that avoids rotating magnets and is suitable for electrical-drive applications. So far, Wiegand-sensor-based encoders usually include a magnetic pole wheel with rotating permanent magnets. These encoders combine the disadvantages of an increased magnet demand and a limited maximal speed due to the centripetal force acting on the rotating magnets. The proposed approach reduces the total demand of permanent magnets drastically. Moreover, the rotating part is manufacturable from a single piece of steel, which makes it very robust and cheap. This work presents the theoretical operating principle of the proposed approach and validates its benefits on a hardware prototype. The presented proof-of-concept prototype achieves a mechanical resolution of 4.5 ° by using only 4 permanent magnets, 2Wiegand sensors and a rotating steel gear wheel with 20 teeth.}, language = {en} } @misc{WiegnerVolkerMainzetal.2022, author = {Wiegner, J. and Volker, H. and Mainz, F. and Backes, A. and L{\"o}ken, M. and H{\"u}ning, Felix}, title = {Wiegand-Effect-Powered Wireless IT Sensor Node}, year = {2022}, abstract = {With the growing interest in small distributed sensors for the "Internet of Things", more attention is being paid to energy harvesting techologies. Reducing or eliminating the need for external power sources or batteries make devices more self-sufficient, more reliable, and reduces maintenance requirements. The Wiegand effect is a proven technology for harvesting small amounts of electrical power from mechanical motion.}, language = {en} } @article{WiegnerVolkerMainzetal.2023, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and Loeken, Michael and H{\"u}ning, Felix}, title = {Energy analysis of a wireless sensor node powered by a Wiegand sensor}, series = {Journal of Sensors and Sensor Systems (JSSS)}, volume = {12}, journal = {Journal of Sensors and Sensor Systems (JSSS)}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-12-85-2023}, pages = {85 -- 92}, year = {2023}, abstract = {This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed.}, language = {en} } @misc{HueningBackes2022, author = {H{\"u}ning, Felix and Backes, Andreas}, title = {Wiegand-Modul}, year = {2022}, abstract = {Ein Wiegand-Modul (110;210;310) umfassend- eine Sensorspule (112;212;312),- einen ersten Wiegand-Draht (116a;216a;316a), der zumindest teilweise innerhalb der Sensorspule (112;212;312) angeordnet ist, und- einen zweiten Wiegand-Draht (116b;216b;316b), der zumindest teilweise innerhalb der Sensorspule (112;212;312) angeordnet ist und sich im Wesentlichen parallel zu dem ersten Wiegand-Draht (116a;216a;316a) erstreckt, ist bekannt.Um eine effiziente Ausnutzung der durch die Ummagnetisierung der Wiegand-Dr{\"a}hte (116a,116b;216a,216b;316a,316b) in die Sensorspule (112;212;312) induzierten elektrischen Energie zu erm{\"o}glichen, sind der erste Wiegand-Draht (116a;216a;316a) und der zweite Wiegand-Draht (116b;216b;316b) bezogen auf eine axiale Richtung der Sensorspule (112;212;312) versetzt zueinander angeordnet.}, language = {de} } @inproceedings{OstkottePetersHueningetal.2022, author = {Ostkotte, Sebastian and Peters, Constantin and H{\"u}ning, Felix and Bragard, Michael}, title = {Design, implementation and verification of an rotational incremental position encoder based on the magnetic Wiegand effect}, series = {2022 ELEKTRO (ELEKTRO)}, booktitle = {2022 ELEKTRO (ELEKTRO)}, publisher = {IEEE}, isbn = {978-1-6654-6726-1}, issn = {2691-0616}, doi = {10.1109/ELEKTRO53996.2022.9803477}, pages = {6 Seiten}, year = {2022}, abstract = {This paper covers the use of the magnetic Wiegand effect to design an innovative incremental encoder. First, a theoretical design is given, followed by an estimation of the achievable accuracy and an optimization in open-loop operation. Finally, a successful experimental verification is presented. For this purpose, a permanent magnet synchronous machine is controlled in a field-oriented manner, using the angle information of the prototype.}, language = {en} } @inproceedings{WiegnerVolkerMainzetal.2022, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and L{\"o}ken, Michael and H{\"u}ning, Felix}, title = {Wiegand-effect-powered wireless IoT sensor node}, series = {Sensoren und Messsysteme 2022}, booktitle = {Sensoren und Messsysteme 2022}, publisher = {VDE Verlag GmbH}, address = {Berlin}, isbn = {978-3-8007-5835-7}, pages = {255 -- 260}, year = {2022}, abstract = {In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.}, language = {en} }