@article{BlomeSeboldtDachwaldetal.2004, author = {Blome, Hans-Joachim and Seboldt, Wolfgang and Dachwald, Bernd and Richter, Lutz}, title = {Proposal for an integrated European Space Exploration Study}, series = {Space Debris and Space Traffic Management Symposium 2004 : proceedings of the International Academy of Astronautics Space Debris and Space Traffic Management Symposium, held in conjunction with the 55th International Astronautical Congress (IAC), October 4 - 8, 2004, Vancouver, British Columbia, Canada / ed. by Joerg Bendisch}, journal = {Space Debris and Space Traffic Management Symposium 2004 : proceedings of the International Academy of Astronautics Space Debris and Space Traffic Management Symposium, held in conjunction with the 55th International Astronautical Congress (IAC), October 4 - 8, 2004, Vancouver, British Columbia, Canada / ed. by Joerg Bendisch}, publisher = {Univelt}, address = {San Diego, Calif.}, isbn = {0-87703-523-7}, pages = {XI, 432 S. : Ill., graph. Darst.}, year = {2004}, language = {en} } @incollection{BorggrafeOhndorfDachwaldetal.2012, author = {Borggrafe, Andreas and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang}, title = {Analysis of interplanetary solar sail trajectories with attitude dynamics}, series = {Dynamics and Control of Space Systems 2012}, booktitle = {Dynamics and Control of Space Systems 2012}, publisher = {Univelt Inc}, address = {San Diego}, isbn = {978-0-87703-587-9}, pages = {1553 -- 1569}, year = {2012}, abstract = {We present a new approach to the problem of optimal control of solar sails for low-thrust trajectory optimization. The objective was to find the required control torque magnitudes in order to steer a solar sail in interplanetary space. A new steering strategy, controlling the solar sail with generic torques applied about the spacecraft body axes, is integrated into the existing low-thrust trajectory optimization software InTrance. This software combines artificial neural networks and evolutionary algorithms to find steering strategies close to the global optimum without an initial guess. Furthermore, we implement a three rotational degree-of-freedom rigid-body attitude dynamics model to represent the solar sail in space. Two interplanetary transfers to Mars and Neptune are chosen to represent typical future solar sail mission scenarios. The results found with the new steering strategy are compared to the existing reference trajectories without attitude dynamics. The resulting control torques required to accomplish the missions are investigated, as they pose the primary requirements to a real on-board attitude control system.}, language = {en} } @inproceedings{DachwaldBaturkinCoverstoneetal.2005, author = {Dachwald, Bernd and Baturkin, Volodymyr and Coverstone, Victoria and Diedrich, Ben and Garbe, Gregory and G{\"o}rlich, Marianne and Leipold, Manfred and Lura, Franz and Macdonald, Malcolm and McInnes, Colin and Mengali, Giovanni and Quarta, Alessandro and Rios-Reyes, Leonel and Scheeres, Daniel J. and Seboldt, Wolfgang and Wie, Bong}, title = {Potential effects of optical solar sail degredation on trajectory design}, series = {AAS/AIAA Astrodynamics Specialist}, booktitle = {AAS/AIAA Astrodynamics Specialist}, pages = {1 -- 23}, year = {2005}, abstract = {The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions.}, language = {en} } @article{DachwaldBaturkinCoverstoneetal.2006, author = {Dachwald, Bernd and Baturkin, Volodymyr and Coverstone, Victoria L. and Dietrich, Benjamin and Garbe, Gregory P. and G{\"o}rlich, Marianne and Leipold, Manfred and Lura, Franz and Macdonald, Malcolm and McInnes, Colin R. and Mengali, Giovanni and Quatra, Alessandro A. and Rios-Reyes, Leonel and Scheeres, Daniel J. and Seboldt, Wolfgang and Wie, Bong}, title = {Potential Effects of Optical Solar Sail Degradation on Interplanetary Trajectory Design}, series = {Astrodynamics 2005 : proceedings of the AAS/AIAA astrodynamics conference held August 7 - 11, 2005, South Lake Tahoe, California / ed. by Bobby G. Williams. - Pt. 3. - (Advances in the astronautical sciences ; 123,3)}, journal = {Astrodynamics 2005 : proceedings of the AAS/AIAA astrodynamics conference held August 7 - 11, 2005, South Lake Tahoe, California / ed. by Bobby G. Williams. - Pt. 3. - (Advances in the astronautical sciences ; 123,3)}, publisher = {Univelt}, address = {San Diego, Calif.}, isbn = {0-87703-527-X}, pages = {2569 -- 2592}, year = {2006}, language = {en} } @incollection{DachwaldBoehnhardtBrojetal.2014, author = {Dachwald, Bernd and Boehnhardt, Herrmann and Broj, Ulrich and Geppert, Ulrich R. M. E. and Grundmann, Jan-Thimo and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Johnson, Les and K{\"u}hrt, Ekkehard and Mottola, Stefano and Macdonald, Malcolm and McInnes, Colin R. and Vasile, Massimiliano and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a multiple NEO Rendezvous Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {211 -- 226}, year = {2014}, abstract = {A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy based on the DLR/ESA Gossamer technology. The main scientific objective of the mission is to explore the diversity of NEOs. After direct interplanetary insertion, the solar sailcraft should—within less than 10 years—rendezvous three NEOs that are not only scientifically interesting, but also from the point of human spaceight and planetary defense. In this paper, the objectives of the study are outlined and a preliminary potential mission profile is presented.}, language = {en} } @article{DachwaldSchmidtSeboldtetal.2003, author = {Dachwald, Bernd and Schmidt, Tanja D. and Seboldt, Wolfgang and Auweter-Kurtz,}, title = {Flight Opportunities from Mars to Earth for Piloted Missions Using Continuous Thrust Propulsion / Schmidt, Tanja D. ; Dachwald, Bernd ; Seboldt, Wolfgang ; Auweter-Kurtz, Monika}, publisher = {-}, pages = {1 -- 9}, year = {2003}, language = {en} } @article{DachwaldSeboldt2003, author = {Dachwald, Bernd and Seboldt, Wolfgang}, title = {Solar sailcraft of the first generation technology development / Seboldt, Wolfgang ; Dachwald, Bernd}, year = {2003}, language = {en} } @article{DachwaldSeboldt2003, author = {Dachwald, Bernd and Seboldt, Wolfgang}, title = {Solar sailcraft of the first generation mission applications to near-earth asteroids}, year = {2003}, language = {en} } @inproceedings{DachwaldSeboldtHaeusler2002, author = {Dachwald, Bernd and Seboldt, Wolfgang and H{\"a}usler, Bernd}, title = {Performance requirements for near-term interplanetary solar sailcraft missions}, series = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, booktitle = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, pages = {9 Seiten}, year = {2002}, abstract = {Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions.}, language = {en} } @inproceedings{DachwaldSeboldtLoebetal.2007, author = {Dachwald, Bernd and Seboldt, Wolfgang and Loeb, Horst W. and Schartner, Karl-Heinz}, title = {A comparison of SEP and NEP for a main belt asteroid sample return mission}, series = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, booktitle = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, pages = {1 -- 10}, year = {2007}, abstract = {Innovative interplanetary deep space missions, like a main belt asteroid sample return mission, require ever larger velocity increments (∆V s) and thus ever more demanding propulsion capabilities. Providing much larger exhaust velocities than chemical high-thrust systems, electric low-thrust space-propulsion systems can significantly enhance or even enable such high-energy missions. In 1995, a European-Russian Joint Study Group (JSG) presented a study report on "Advanced Interplanetary Missions Using Nuclear-Electric Propulsion" (NEP). One of the investigated reference missions was a sample return (SR) from the main belt asteroid (19) Fortuna. The envisaged nuclear power plant, Topaz-25, however, could not be realized and also the worldwide developments in space reactor hardware stalled. In this paper, we investigate, whether such a mission is also feasible using a solar electric propulsion (SEP) system and compare our SEP results to corresponding NEP results.}, language = {en} }