@article{AbouzarPoghossianCherstvyetal.2012, author = {Abouzar, Maryam H. and Poghossian, Arshak and Cherstvy, Andrey G. and Pedraza, Angela M. and Ingebrandt, Sven and Sch{\"o}ning, Michael Josef}, title = {Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100710}, pages = {925 -- 934}, year = {2012}, abstract = {Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface.}, language = {en} } @inproceedings{BohrnMuchaWerneretal.2012, author = {Bohrn, Ulrich and Mucha, Andreas and Werner, Frederik and St{\"u}tz, Evamaria and B{\"a}cker, Matthias and Krumbe, Christoph and Schienle, Meinrad and Fleischer, Maximilian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Detection of toxic chromium species in water using cellbased sensor systems}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/P2.1.14}, pages = {1364 -- 1367}, year = {2012}, language = {en} } @inproceedings{BohrnStuetzFleischeretal.2012, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Living cell-based gas sensor system for the detection of acetone in air}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/3.2.3}, pages = {269 -- 272}, year = {2012}, language = {en} } @article{BorgmeierBongaertsMeinhardt2012, author = {Borgmeier, Claudia and Bongaerts, Johannes and Meinhardt, Friedhelm}, title = {Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production}, series = {Journal of biotechnology}, volume = {159}, journal = {Journal of biotechnology}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2012.02.011}, pages = {12 -- 20}, year = {2012}, abstract = {Disruption experiments targeted at the Bacillus licheniformis degSU operon and GFP-reporter analysis provided evidence for promoter activity immediately upstream of degU. pMutin mediated concomitant introduction of the degU32 allele - known to cause hypersecretion in Bacillus subtilis - resulted in a marked increase in protease activity. Application of 5-fluorouracil based counterselection through establishment of a phosphoribosyltransferase deficient Δupp strain eventually facilitated the marker-free introduction of degU32 leading to further protease enhancement achieving levels as for hypersecreting wild strains in which degU was overexpressed. Surprisingly, deletion of rapG - known to interfere with DegU DNA-binding in B. subtilis - did not enhance protease production neither in the wild type nor in the degU32 strain. The combination of degU32 and Δupp counterselection in the type strain is not only equally effective as in hypersecreting wild strains with respect to protease production but furthermore facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes.}, language = {en} } @article{BaeckerRaueSchusseretal.2012, author = {B{\"a}cker, Matthias and Raue, Markus and Schusser, Sebastian and Jeitner, C. and Breuer, L. and Wagner, P. and Poghossian, Arshak and F{\"o}rster, Arnold and Mang, Thomas and Sch{\"o}ning, Michael Josef}, title = {Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100763}, pages = {839 -- 845}, year = {2012}, abstract = {Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3-12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off.}, language = {en} } @article{GrinsvenBonStrauvenetal.2012, author = {Grinsven, Bart van and Bon, Natalie vanden and Strauven, Hannelore and Grieten, Lars and Murib, Mohammed and Jim{\´e}nez Monroy, Kathia L. and Janssens, Stoffel D. and Haenen, Ken and Sch{\"o}ning, Michael Josef and Vermeeren, Veronique and Ameloot, Marcel and Michiels, Luc and Thoelen, Ronald and Ceuninck, Ward de and Wagner, Patrick}, title = {Heat-Transfer Resistance at Solid-Liquid Interfaces: A Tool for The Detection of Single Nucleotide Polymorphisms in DNA.}, series = {ACS Nano}, volume = {6}, journal = {ACS Nano}, number = {3}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1936-086X}, doi = {10.1021/nn300147e}, pages = {2712 -- 2721}, year = {2012}, abstract = {In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA.}, language = {en} } @article{HenkenOosterhuisOehlschlaegeretal.2012, author = {Henken, F. E. and Oosterhuis, K. and {\"O}hlschl{\"a}ger, Peter and Bosch, L. and Hooijberg, E. and Haanen, J. B. A. G. and Steenbergen, R. D. M.}, title = {Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7}, series = {Vaccine}, volume = {30}, journal = {Vaccine}, number = {28}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0264-410X}, doi = {10.1016/j.vaccine.2012.04.013}, pages = {4259 -- 4266}, year = {2012}, abstract = {Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of 'gene-shuffled' (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies.}, language = {en} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} } @article{IkenKirsanovLeginetal.2012, author = {Iken, Heiko and Kirsanov, D. and Legin, A. and Sch{\"o}ning, Michael Josef}, title = {Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.148}, pages = {322 -- 325}, year = {2012}, abstract = {A variety of transition metals, e.g., copper, zinc, cadmium, lead, etc. are widely used in industry as components for wires, coatings, alloys, batteries, paints and so on. The inevitable presence of transition metals in industrial processes implies the ambition of developing a proper analytical technique for their adequate monitoring. Most of these elements, especially lead and cadmium, are acutely toxic for biological organisms. Quantitative determination of these metals at low activity levels in different environmental and industrial samples is therefore a vital task. A promising approach to achieve an at-side or on-line monitoring on a miniaturized and cost efficient way is the combination of a common potentiometric sensor array with heavy metal-sensitive thin-film materials, like chalcogenide glasses and polymeric materials, respectively.}, language = {en} } @article{ImmelGruetzkeSpaeteetal.2012, author = {Immel, Timo and Gr{\"u}tzke, Martin and Sp{\"a}te, Anne-Katrin and Groth, Ulrich and {\"O}hlschl{\"a}ger, Peter and Huhn, Thomas}, title = {Synthesis and X-ray structure analysis of a heptacoordinate titanium(IV)-bis-chelate with enhanced in vivo antitumor efficacy}, series = {Chemical Communications}, volume = {48}, journal = {Chemical Communications}, number = {46}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-548X}, doi = {10.1039/C2CC31624B}, pages = {5790 -- 5792}, year = {2012}, abstract = {Chelate stabilization of a titanium(IV)-salan alkoxide by ligand exchange with 2,6-pyridinedicarboxylic acid (dipic) resulted in heptacoordinate complex 3 which is not redox-active, stable on silica gel and has increased aqueous stability. 3 is highly toxic in HeLa S3 and Hep G2 and has enhanced antitumor efficacy in a mouse cervical-cancer model.}, language = {en} }