@article{LagemaatBreukelsVosetal.2016, author = {Lagemaat, Miriam W. and Breukels, Vincent and Vos, Eline K. and B., Adam and Uden, Mark J. van and Orzada, Stephan and Bitz, Andreas and Maas, Marnix C. and Scheenen, Tom W. J.}, title = {¹H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses}, series = {Magnetic Resonance in Medicine}, volume = {75}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {International Society for Magnetic Resonance in Medicine}, issn = {1522-2594}, doi = {10.1002/mrm.25569}, pages = {933 -- 945}, year = {2016}, abstract = {Purpose To assess the feasibility of prostate ¹H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. Methods A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate ¹H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. Results Prostate ¹H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. Conclusion It is possible to perform prostate ¹H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.}, language = {en} } @article{SchmidtForkmannSinkeetal.2016, author = {Schmidt, K. and Forkmann, K. and Sinke, C. and Gratz, M. and Bitz, Andreas and Bingel, U.}, title = {The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear}, series = {NeuroImage}, volume = {134}, journal = {NeuroImage}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2016.03.026}, pages = {386 -- 395}, year = {2016}, abstract = {Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance.}, language = {en} } @article{ChenSchoembergKraffetal.2016, author = {Chen, Bixia and Schoemberg, Tobias and Kraff, Oliver and Dammann, Philipp and Bitz, Andreas and Schlamann, Marc and Quick, Harald H. and Ladd, Mark E. and Sure, Ulrich and Wrede, Karsten H.}, title = {Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {29}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-016-0548-1}, pages = {389 -- 398}, year = {2016}, abstract = {Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.}, language = {en} } @article{OrzadaLaddBitz2016, author = {Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {A method to approximate maximum local SAR in multichannel transmit MR systems without transmit phase information}, series = {Magnetic Resonance in Medicine}, volume = {78}, journal = {Magnetic Resonance in Medicine}, number = {2}, publisher = {International Society for Magnetic Resonance in Medicine}, issn = {1522-2594}, doi = {10.1002/mrm.26398}, pages = {805 -- 811}, year = {2016}, abstract = {Purpose To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. Methods The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. Results The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. Conclusion The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases}, language = {en} }