@article{PilasMarianoKeusgenetal.2015, author = {Pilas, Johanna and Mariano, K. and Keusgen, M. and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.702}, pages = {532 -- 535}, year = {2015}, language = {en} } @article{PilasIkenSelmeretal.2015, author = {Pilas, Johanna and Iken, Heiko and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431894}, pages = {1306 -- 1312}, year = {2015}, abstract = {An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage.}, language = {en} } @article{HuckSchiffelsHerreraetal.2013, author = {Huck, Christina and Schiffels, Johannes and Herrera, Cony N. and Schelden, Maximilian and Selmer, Thorsten and Poghossian, Arshak and Baumann, Marcus and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201200900}, pages = {926 -- 931}, year = {2013}, abstract = {Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the "welfare" of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis-Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed.}, language = {en} } @article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} }