@article{OertelBung2015, author = {Oertel, Mario and Bung, Daniel B.}, title = {Stability and scour development of bed material on crossbar block ramps}, series = {International journal of sediment research}, volume = {30}, journal = {International journal of sediment research}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1001-6279}, doi = {10.1016/j.ijsrc.2014.12.003}, pages = {344 -- 350}, year = {2015}, abstract = {Block ramps are ecologically oriented drop structures with adequate energy dissipation and partially moderate flow velocities. A special case is given with crossbar block ramps, where the upstream and downstream level difference is reduced by a series of basins. To prevent the total structure from failing, the stability of single boulders within the crossbars and the bed material in between must be guaranteed. The present paper addresses the stability of bed material and scour development for various flow regimes. Any bed material erosion may affect the stability of the crossbar boulders, which in turn can result in major damages of the ramp. Therefore new design approaches are developed to choose an appropriate bed material size and to avoid failures of crossbar block ramp structures.}, language = {en} } @article{LeandroBungCarvalho2014, author = {Leandro, J. and Bung, Daniel B. and Carvalho, R.}, title = {Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods}, series = {Experiments in fluids}, journal = {Experiments in fluids}, number = {55}, publisher = {Springer Nature}, address = {Heidelberg}, issn = {0723-4864 (Print) ; 1432-1114 (Online)}, doi = {10.1007/s00348-014-1732-6}, pages = {Art. 1732}, year = {2014}, language = {en} } @article{Bung2011, author = {Bung, Daniel B.}, title = {Fließcharakteristik und Sauerstoffeintrag bei selbstbel{\"u}fteten Gerinnestr{\"o}mungen auf Kaskaden mit gem{\"a}ßigter Neigung}, series = {{\"O}sterreichische Wasser- und Abfallwirtschaft}, volume = {Vol. 63}, journal = {{\"O}sterreichische Wasser- und Abfallwirtschaft}, number = {Iss. 3-4}, publisher = {Springer}, address = {Berlin}, issn = {1613-7566 (E-Journal); 0945-358X (Print)}, pages = {76 -- 81}, year = {2011}, language = {de} } @article{Bung2011, author = {Bung, Daniel B.}, title = {Developing flow in skimming flow regime on embankment stepped spillways}, series = {Journal of hydraulic research}, volume = {Vol. 49}, journal = {Journal of hydraulic research}, number = {Iss. 5}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079 (E-Journal); 0022-1686 (Print)}, pages = {639 -- 648}, year = {2011}, language = {en} } @article{OertelBung2012, author = {Oertel, Mario and Bung, Daniel B.}, title = {Initial stage of two-dimensional dam-break waves: laboratory versus VOF}, series = {Journal of hydraulic research}, volume = {50}, journal = {Journal of hydraulic research}, number = {1}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079 (E-Journal); 0022-1686 (Print)}, doi = {10.1080/00221686.2011.639981}, pages = {89 -- 97}, year = {2012}, abstract = {Since several decades, dam-break waves have been of main research interest. Mathematical approaches have been developed by analytical, physical and numerical models within the past 120 years. During the past 10 years, the number of research investigations has increased due to improved measurement techniques as well as significantly increased computer memories and performances. In this context, the present research deals with the initial stage of two-dimensional dam-break waves by comparing physical and numerical model results as well as analytical approaches. High-speed images and resulting particle image velocimetry calculations are thereby compared with the numerical volume-of-fluid (VOF) method, included in the commercial code FLOW-3D. Wave profiles and drag forces on placed obstacles are analysed in detail. Generally, a good agreement between the laboratory and VOF results is found.}, language = {en} } @article{Bung2013, author = {Bung, Daniel B.}, title = {Non-intrusive detection of air-water surface roughness in self-aerated chute flows}, series = {Journal of hydraulic research}, volume = {Vol. 51}, journal = {Journal of hydraulic research}, number = {Iss. 3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079 (E-Journal); 0022-1686 (Print)}, pages = {322 -- 329}, year = {2013}, language = {en} }