@article{AbouzarPoghossianRazavietal.2008, author = {Abouzar, Maryam H. and Poghossian, Arshak and Razavi, Arash and Besmehn, Astrid and Bijnens, Nathalie and Williams, Oliver A. and Haenen, Ken and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection with nanocrystalline-diamond field-effect sensor}, series = {physica status solidi (a). 205 (2008), H. 9}, journal = {physica status solidi (a). 205 (2008), H. 9}, isbn = {1862-6319}, pages = {2141 -- 2145}, year = {2008}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2008, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors}, series = {Journal of Contemporary Physics. 43 (2008), H. 2}, journal = {Journal of Contemporary Physics. 43 (2008), H. 2}, isbn = {1934-9378}, pages = {77 -- 81}, year = {2008}, language = {en} } @article{BaeckerPoghossianAbouzaretal.2010, author = {B{\"a}cker, Matthias and Poghossian, Arshak and Abouzar, Maryam H. and Wenmackers, Sylvia and Janssens, Stoffel D. and Haenen, Ken and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect (bio-)chemical sensors based on nanocrystalline diamond films}, series = {Diamond Electronics and Bioelectronics — Fundamentals to Applications III, edited by P. Bergonzo, [u.a.]}, journal = {Diamond Electronics and Bioelectronics — Fundamentals to Applications III, edited by P. Bergonzo, [u.a.]}, pages = {1 -- 6}, year = {2010}, language = {en} } @article{BaeckerBegingBisellietal.2009, author = {B{\"a}cker, Matthias and Beging, Stefan and Biselli, Manfred and Poghossian, Arshak and Wang, J. and Zang, Werner and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Concept for a solid-state multi-parameter sensor system for cell-culture monitoring}, series = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, journal = {Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0013-4686}, pages = {6107 -- 6112}, year = {2009}, language = {en} } @article{GunGutkinLevetal.2011, author = {Gun, Jenny and Gutkin, Vitaly and Lev, Ovadia and Boyen, Hans-Gerd and Saitner, Marc and Wagner, Patrick and Olieslaeger, Marc D´ and Abouzar, Maryam H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices}, series = {Journal of Physical Chemistry C. 115 (2011), H. 11}, journal = {Journal of Physical Chemistry C. 115 (2011), H. 11}, publisher = {American Cemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {4439 -- 4445}, year = {2011}, language = {en} } @article{BaeckerPouyeshmanSchnitzleretal.2011, author = {B{\"a}cker, Matthias and Pouyeshman, S. and Schnitzler, Thomas and Poghossian, Arshak and Wagner, Patrick and Biselli, Manfred and Sch{\"o}ning, Michael Josef}, title = {A silicon-based multi-sensor chip for monitoring of fermentation processes}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1364 -- 1369}, year = {2011}, language = {en} } @article{HuckJollyWagneretal.2011, author = {Huck, Christina and Jolly, Christina and Wagner, Patrick and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {One-chip integrated dual amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {1161 -- 1164}, year = {2011}, language = {en} } @inproceedings{SchusserLeinhosPoghossianetal.2012, author = {Schusser, Sebastian and Leinhos, Marcel and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Biopolymer-degradation monitoring by chip-­based impedance spectroscopy technique}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {47 -- 47}, year = {2012}, language = {en} } @article{SchusserPoghossianBaeckeretal.2012, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Leinhos, Marcel and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Characterization of biodegradable polymers with capacitive field-effect sensors}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.07.099}, pages = {2 -- 7}, year = {2012}, abstract = {In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance-voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor.}, language = {en} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} }