@inproceedings{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Usage of digital twins for gamification applications in manufacturing}, series = {Procedia CIRP}, volume = {107}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.044}, pages = {675 -- 680}, year = {2022}, abstract = {Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers' actions. Game elements are selected according to the work task and users' preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting.}, language = {en} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Simulation und Verifikation komplexer Handarbeitsprozesse durch die Kombination von Virtual Reality und Augmented Reality im Single-Piece-Workflow}, series = {AALE 2020, 17. Fachkonferenz Angewandte Automatisierungstechnik in Lehre und Entwicklung, Automatisierung und Mensch-Technik-Interaktion, Leipzig, DE, 4.-6.3.2020}, booktitle = {AALE 2020, 17. Fachkonferenz Angewandte Automatisierungstechnik in Lehre und Entwicklung, Automatisierung und Mensch-Technik-Interaktion, Leipzig, DE, 4.-6.3.2020}, isbn = {978-3-8007-5180-8}, pages = {1 -- 4}, year = {2020}, language = {de} } @inproceedings{UlmerLaiChengetal.2019, author = {Ulmer, Jessica and Lai, Chow Yin and Cheng, Chi-Tsun and Wollert, J{\"o}rg}, title = {Integration von VR und AR in Produktlebenszyklen - Eine {\"U}bersicht {\"u}ber die Nutzung virtueller Technologien im industriellen Umfeld}, series = {Automation 2019}, booktitle = {Automation 2019}, pages = {1 -- 12}, year = {2019}, language = {de} } @article{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Human-Centered Gamification Framework for Manufacturing Systems}, series = {Procedia CIRP}, volume = {93}, journal = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2020.04.076}, pages = {670 -- 675}, year = {2020}, abstract = {While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees' engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown.}, language = {en} } @inproceedings{UlmerBraunWollert2018, author = {Ulmer, Jessica and Braun, Sebastian and Wollert, J{\"o}rg}, title = {Generische IoT Adapter f{\"u}r semantische Maschinenschnittstellen}, series = {Internet of Things - vom Sensor bis zur Cloud}, booktitle = {Internet of Things - vom Sensor bis zur Cloud}, pages = {1 -- 5}, year = {2018}, language = {de} } @inproceedings{UlmerBraunLaietal.2019, author = {Ulmer, Jessica and Braun, Sebastian and Lai, Chow Yin and Cheng, Chi-Tsun and Wollert, J{\"o}rg}, title = {Generic integration of VR and AR in product lifecycles based on CAD models}, series = {Proceedings of The 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, booktitle = {Proceedings of The 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, year = {2019}, language = {en} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamified Virtual Reality Training Environment for the Manufacturing Industry}, doi = {10.1109/ME49197.2020.9286661}, pages = {1 -- 6}, year = {2020}, language = {de} } @article{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results}, series = {International Journal of Human-Computer Studies}, volume = {165}, journal = {International Journal of Human-Computer Studies}, number = {Art. No. 102854}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1071-5819}, doi = {10.1016/j.ijhcs.2022.102854}, year = {2022}, abstract = {Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.}, language = {en} } @inproceedings{UlmerWollertChengetal.2020, author = {Ulmer, Jessica and Wollert, J{\"o}rg and Cheng, C. and Dowey, S.}, title = {Enterprise Gamification f{\"u}r produzierende mittelst{\"a}ndische Unternehmen}, series = {Shaping automation for our future: 21. Leitkongress Mess- u. Automatisierungstechnik : Automation 2020 : 30. Juni u. 01. Juli 2020}, booktitle = {Shaping automation for our future: 21. Leitkongress Mess- u. Automatisierungstechnik : Automation 2020 : 30. Juni u. 01. Juli 2020}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092375-8}, pages = {157 -- 165}, year = {2020}, language = {de} } @inproceedings{UlmerMostafaWollert2022, author = {Ulmer, Jessica and Mostafa, Youssef and Wollert, J{\"o}rg}, title = {Digital Twin Academy: From Zero to Hero through individual learning experiences}, series = {Tagungsband AALE 2022 / Herausgegeben von der Hochschule f{\"u}r Technik, Wirtschaft und Kultur Leipzig}, booktitle = {Tagungsband AALE 2022 / Herausgegeben von der Hochschule f{\"u}r Technik, Wirtschaft und Kultur Leipzig}, isbn = {978-3-910103-00-9}, doi = {10.33968/2022.33}, url = {http://nbn-resolving.de/urn:nbn:de:bsz:l189-qucosa2-776097}, pages = {1 -- 9}, year = {2022}, abstract = {Digital twins are seen as one of the key technologies of Industry 4.0. Although many research groups focus on digital twins and create meaningful outputs, the technology has not yet reached a broad application in the industry. The main reasons for this imbalance are the complexity of the topic, the lack of specialists, and the unawareness of the twin opportunities. The project "Digital Twin Academy" aims to overcome these barriers by focusing on three actions: Building a digital twin community for discussion and exchange, offering multi-stage training for various knowledge levels, and implementing realworld use cases for deeper insights and guidance. In this work, we focus on creating a flexible learning platform that allows the user to select a training path adjusted to personal knowledge and needs. Therefore, a mix of basic and advanced modules is created and expanded by individual feedback options. The usage of personas supports the selection of the appropriate modules.}, language = {en} }