@inproceedings{DalguerRenaultChurilovetal.2016, author = {Dalguer, Luis A. and Renault, Philippe and Churilov, Sergey and Butenweg, Christoph}, title = {Evaluation of fragility curves for a three-storey-reinforced-concrete mock-up of SMART 2013 project}, series = {Transactions, SMiRT-23 : 23rd Conference on Structural Mechanics in Reactor Technology : Manchester, United Kingdom - August 10-14, 2015}, booktitle = {Transactions, SMiRT-23 : 23rd Conference on Structural Mechanics in Reactor Technology : Manchester, United Kingdom - August 10-14, 2015}, organization = {Conference on Structural Mechanics in Reactor Technology <23, 2015, Manchester>}, pages = {1 -- 9}, year = {2016}, language = {en} } @inproceedings{DalguerChurilovButenwegetal.2014, author = {Dalguer, Luis A. and Churilov, Sergey and Butenweg, Christoph and Renault, Philippe and Hyun, An Jun}, title = {Dynamic analysis of a reinforced concrete electrical nuclear building of SMART 2013 project subjected to earthquake excitation using ABAQUS}, series = {Workshop SMART2013 : Paris, France, November 25th - 27th, 2014}, booktitle = {Workshop SMART2013 : Paris, France, November 25th - 27th, 2014}, organization = {Workshop SMART2013 <2014, Paris>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{RajanKubalskiAltayetal.2017, author = {Rajan, Sreelakshmy and Kubalski, Thomas and Altay, Okyay and Dalguer, Luis A and Butenweg, Christoph}, title = {Multi-dimensional fragility analysis of a RC building with components using response surface method}, series = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, booktitle = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, publisher = {International Assn for Structural Mechanics in Reactor Technology (IASMiRT)}, address = {Raleigh, USA}, isbn = {9781510856776}, pages = {3126 -- 3135}, year = {2017}, abstract = {Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples.}, language = {en} }