@article{KirchnerOberlaenderSusoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suso, Henri-Pierre and Rysstad, Gunnar and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes}, series = {Physica status solidi (a)}, volume = {210}, journal = {Physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200920}, pages = {877 -- 883}, year = {2013}, abstract = {A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests.}, language = {en} } @article{WernerWagnerYoshinobuetal.2013, author = {Werner, Frederik and Wagner, Torsten and Yoshinobu, Tatsuo and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Frequency behaviour of light-addressable potentiometric sensors}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X ; 0031-8965}, doi = {10.1002/pssa.201200929}, pages = {884 -- 891}, year = {2013}, abstract = {Light-addressable potentiometric sensors (LAPS) are semiconductor-based potentiometric sensors, with the advantage to detect the concentration of a chemical species in a liquid solution above the sensor surface in a spatially resolved manner. The addressing is achieved by a modulated and focused light source illuminating the semiconductor and generating a concentration-depending photocurrent. This work introduces a LAPS set-up that is able to monitor the electrical impedance in addition to the photocurrent. The impedance spectra of a LAPS structure, with and without illumination, as well as the frequency behaviour of the LAPS measurement are investigated. The measurements are supported by electrical equivalent circuits to explain the impedance and the LAPS-frequency behaviour. The work investigates the influence of different parameters on the frequency behaviour of the LAPS. Furthermore, the phase shift of the photocurrent, the influence of the surface potential as well as the changes of the sensor impedance will be discussed.}, language = {en} }