@article{LagemaatMaasVosetal.2015, author = {Lagemaat, Miriam W. and Maas, Marnix C. and Vos, Eline K. and Bitz, Andreas and Orzada, Stephan and Weiland, Elisabeth and Uden, Mark J. van and Kobus, Thiele and Heerschap, Arend and Scheenen, Tom W. J.}, title = {(31) P MR spectroscopic imaging of the human prostate at 7 T: T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization}, series = {Magnetic Resonance in Medicine}, volume = {73}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.25209}, pages = {909 -- 920}, year = {2015}, language = {en} } @article{LagemaatVosMaasetal.2014, author = {Lagemaat, Miriam W. and Vos, Eline K. and Maas, Marnix C. and Bitz, Andreas and Orzada, Stephan and Uden, Mark J. van and Kobus, Thiele and Heerschap, Arend and Scheenen, Tom W. J.}, title = {Phosphorus magnetic resonance spectroscopic imaging at 7 T in patients with prostate cancer}, series = {Investigative Radiology}, volume = {49}, journal = {Investigative Radiology}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia, Pa.}, issn = {1536-0210}, doi = {10.1097/RLI.0000000000000012}, pages = {363 -- 372}, year = {2014}, abstract = {Objectives The aim of this study was to identify characteristics of phosphorus (³¹P) spectra of the human prostate and to investigate changes of individual phospholipid metabolites in prostate cancer through in vivo ³¹P magnetic resonance spectroscopic imaging (MRSI) at 7 T. Materials and Methods In this institutional review board-approved study, 15 patients with biopsy-proven prostate cancer underwent T₂-weighted magnetic resonance imaging and 3-dimensional ³¹P MRSI at 7 T. Voxels were selected at the tumor location, in normal-appearing peripheral zone tissue, normal-appearing transition zone tissue, and in the base of the prostate close to the seminal vesicles. Phosphorus metabolite ratios were determined and compared between tissue types. Results Signals of phosphoethanolamine (PE) and phosphocholine (PC) were present and well resolved in most ³¹P spectra in the prostate. Glycerophosphocholine signals were observable in 43\% of the voxels in malignant tissue, but in only 10\% of the voxels in normal-appearing tissue away from the seminal vesicles. In many spectra, independent of tissue type, 2 peaks resonated in the chemical shift range of inorganic phosphate, possibly representing 2 separate pH compartments. The PC/PE ratio in the seminal vesicles was highly elevated compared with the prostate in 5 patients. A considerable overlap of ³¹P metabolite ratios was found between prostate cancer and normal-appearing prostate tissue, preventing direct discrimination of these tissues. The only 2 patients with high Gleason scores tumors (≥4+5) presented with high PC and glycerophosphocholine levels in their cancer lesions. Conclusions Phosphorus MRSI at 7 T shows distinct features of phospholipid metabolites in the prostate gland and its surrounding structures. In this exploratory study, no differences in ³¹P metabolite ratios were observed between prostate cancer and normal-appearing prostate tissue possibly because of the partial volume effects of small tumor foci in large MRSI voxels.}, language = {en} } @article{MaasVosLagemaatetal.2014, author = {Maas, Marnix C. and Vos, Eline K. and Lagemaat, Miriam W. and Bitz, Andreas and Orzada, Stephan and Kobus, Thiele and Kraff, Oliver and Maderwald, Stefan and Ladd, Mark E. and Scheenen, Tom W. J.}, title = {Feasibility of T₂-weighted turbo spin echo imaging of the human prostate at 7 tesla}, series = {Magnetic Resonance in Medicine}, volume = {71}, journal = {Magnetic Resonance in Medicine}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24818}, pages = {1711 -- 1719}, year = {2014}, abstract = {Purpose To demonstrate that high quality T₂-weighted (T2w) turbo spin-echo (TSE) imaging of the complete prostate can be achieved routinely and within safety limits at 7 T, using an external transceive body array coil only. Methods Nine healthy volunteers and 12 prostate cancer patients were scanned on a 7 T whole-body system. Preparation consisted of B₀ and radiofrequency shimming and localized flip angle calibration. T₁ and T₂ relaxation times were measured and used to define the T2w-TSE protocol. T2w imaging was performed using a TSE sequence (pulse repetition time/echo time 3000-3640/71 ms) with prolonged excitation and refocusing pulses to reduce specific absorption rate. Results High quality T2w TSE imaging was performed in less than 2 min in all subjects. Tumors of patients with gold-standard tumor localization (MR-guided biopsy or prostatectomy) were well visualized on 7 T imaging (n = 3). The number of consecutive slices achievable within a 10-g averaged specific absorption rate limit of 10 W/kg was ≥28 in all subjects, sufficient for full prostate coverage with 3-mm slices in at least one direction. Conclusion High quality T2w TSE prostate imaging can be performed routinely and within specific absorption rate limits at 7 T with an external transceive body array.}, language = {en} } @article{KobusBitzUdenetal.2012, author = {Kobus, Thiele and Bitz, Andreas and Uden, Mark J. van and Lagemaat, Miram W. and Rothgang, Eva and Orzada, Stephan and Heerschap, Arend and Scheenen, Tom W. J.}, title = {In vivo 31P MR spectroscopic imaging of the human prostate at 7 T: safety and feasibility}, series = {Magnetic Resonance in Medicine}, volume = {68}, journal = {Magnetic Resonance in Medicine}, number = {6}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24175}, pages = {1683 -- 1695}, year = {2012}, abstract = {31P MR spectroscopic imaging of the human prostate provides information about phosphorylated metabolites that could be used for prostate cancer characterization. The sensitivity of a magnetic field strength of 7 T might enable 3D 31P MR spectroscopic imaging with relevant spatial resolution in a clinically acceptable measurement time. To this end, a 31P endorectal coil was developed and combined with an eight-channel 1H body-array coil to relate metabolic information to anatomical location. An extensive safety validation was performed to evaluate the specific absorption rate, the radiofrequency field distribution, and the temperature distribution of both coils. This validation consisted of detailed Finite Integration Technique simulations, confirmed by MR thermometry and Burn:x-wiley:07403194:media:MRM24175:tex2gif-stack-1 measurements in a phantom and in vivo temperature measurements. The safety studies demonstrated that the presence of the 31P endorectal coil had no influence on the specific absorption rate levels and temperature distribution of the external eight-channel 1H array coil. To stay within a 10 g averaged local specific absorption rate of 10 W/kg, a maximum time-averaged input power of 33 W for the 1H array coil was allowed. For transmitting with the 31P endorectal coil, our safety limit of less than 1°C temperature increase in vivo during a 15-min MR spectroscopic imaging experiment was reached at a time-averaged input power of 1.9 W. With this power setting, a second in vivo measurement was performed on a healthy volunteer. Using adiabatic excitation, 3D 31P MR spectroscopic imaging produced spectra from the entire prostate in 18 min with a spatial resolution of 4 cm3. The spectral resolution enabled the separate detection of phosphocholine, phosphoethanolamine, inorganic phosphate, and other metabolites that could play an important role in the characterization of prostate cancer.}, language = {en} } @inproceedings{BitzKobusScheenenetal.2013, author = {Bitz, Andreas and Kobus, Thiele and Scheenen, Tom W. J. and Ladd, Mark E.}, title = {RF Safety of the Combination of a 31P Tx/Rx Endorectal Coil \& a 1H Tx/Rx Body Array for 31P MRSI of the Prostate at 7T (311.)}, series = {20th Annual ISMRM scientific meeting and exhibition 2012 : Melbourne, Australia, 5 - 11 May 2012}, booktitle = {20th Annual ISMRM scientific meeting and exhibition 2012 : Melbourne, Australia, 5 - 11 May 2012}, number = {Volume 1}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-62276-943-8}, issn = {1545-4428}, pages = {311}, year = {2013}, language = {en} }