TY - JOUR A1 - Jablonowski, Nicolai David A1 - Kollmann, Tobias A1 - Nabel, Moritz A1 - Damm, Tatjana A1 - Klose, Holger A1 - Müller, Michael A1 - Bläsing, Marc A1 - Seebold, Sören A1 - Krafft, Simone A1 - Kuperjans, Isabel A1 - Dahmen, Markus A1 - Schurr, Ulrich T1 - Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes JF - GCB [Global Change Biology] Bioenergy N2 - The performance and biomass yield of the perennial energy plant Sida hermaphrodita (hereafter referred to as Sida) as a feedstock for biogas and solid fuel was evaluated throughout one entire growing period at agricultural field conditions. A Sida plant development code was established to allow comparison of the plant growth stages and biomass composition. Four scenarios were evaluated to determine the use of Sida biomass with regard to plant development and harvest time: (i) one harvest for solid fuel only; (ii) one harvest for biogas production only; (iii) one harvest for biogas production, followed by a harvest of the regrown biomass for solid fuel; and (iv) two consecutive harvests for biogas production. To determine Sida's value as a feedstock for combustion, we assessed the caloric value, the ash quality, and melting point with regard to DIN EN ISO norms. The results showed highest total dry biomass yields of max. 25 t ha⁻¹, whereas the highest dry matter of 70% to 80% was obtained at the end of the growing period. Scenario (i) clearly indicated the highest energy recovery, accounting for 439 288 MJ ha⁻¹; the energy recovery of the four scenarios from highest to lowest followed this order: (i) ≫ (iii) ≫ (iv) > (ii). Analysis of the Sida ashes showed a high melting point of >1500 °C, associated with a net calorific value of 16.5–17.2 MJ kg⁻¹. All prerequisites for DIN EN ISO norms were achieved, indicating Sida's advantage as a solid energy carrier without any post-treatment after harvesting. Cell wall analysis of the stems showed a constant lignin content after sampling week 16 (July), whereas cellulose had already reached a plateau in sampling week 4 (April). The results highlight Sida as a promising woody, perennial plant, providing biomass for flexible and multipurpose energy applications. Y1 - 2016 U6 - http://dx.doi.org/10.1111/gcbb.12346 SN - 1757-1707 (online) SN - 1757-1693 (print) N1 - Special Issue: Perennial biomass crops for a resource constrained world VL - 9 IS - 1 SP - 202 EP - 214 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nobis, Moritz A1 - Schmitt, Carlo A1 - Schemm, Ralf A1 - Schnettler, Armin T1 - Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets JF - Energies N2 - The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources. Y1 - 2020 U6 - http://dx.doi.org/10.3390/en13092339 SN - 1996-1073 N1 - Special Issue Uncertainties and Risk Management in Competitive Energy Markets VL - 13 IS - Art. 2339 SP - 1 EP - 35 PB - MDPI CY - Basel ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Paulsen, Svea A1 - Ott, Fabian A1 - Grömping, Markus T1 - Operational window of a deammonifying sludge for mainstream application in a municipal wastewater treatment plant JF - Water and Environment Journal N2 - The present work aimed to study the mainstream feasibility of the deammonifying sludge of side stream of municipal wastewater treatment plant (MWWTP) in Kaster, Germany. For this purpose, the deammonifying sludge available at the side stream was investigated for nitrogen (N) removal with respect to the operational factors temperature (15–30°C), pH value (6.0–8.0) and chemical oxygen demand (COD)/N ratio (≤1.5–6.0). The highest and lowest N-removal rates of 0.13 and 0.045 kg/(m³ d) are achieved at 30 and 15°C, respectively. Different conditions of pH and COD/N ratios in the SBRs of Partial nitritation/anammox (PN/A) significantly influenced both the metabolic processes and associated N-removal rates. The scientific insights gained from the current work signifies the possibility of mainstream PN/A at WWTPs. The current study forms a solid basis of operational window for the upcoming semi-technical trails to be conducted prior to the full-scale mainstream PN/A at WWTP Kaster and WWTPs globally. KW - Anammox KW - Mainstream KW - Nitrogen removal KW - Partial nitritation KW - Wastewater Y1 - 2023 U6 - http://dx.doi.org/10.1111/wej.12898 SN - 1747-6593 N1 - Corresponding author: Dheeraja Cheenakula IS - Early View SP - 1 EP - 12 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Werner, Frederik A1 - Groebel, Simone A1 - Krumbe, Christoph A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Yoshinobu, Tatsuo A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Nutrient concentration-sensitive microorganism-based biosensor JF - Physica Status Solidi (a) Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100801 SN - 1862-6319 VL - 209 IS - 5 SP - 900 EP - 904 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Rieke, Christian A1 - Stollenwerk, Dominik A1 - Dahmen, Markus A1 - Pieper, Martin T1 - Modeling and optimization of a biogas plant for a demand-driven energy supply JF - Energy N2 - Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.energy.2017.12.073 SN - 0360-5442 VL - 145 SP - 657 EP - 664 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dotzauer, Martin A1 - Pfeiffer, Diana A1 - Lauer, Markus A1 - Pohl, Marcel A1 - Mauky, Eric A1 - Bär, Katharina A1 - Sonnleitner, Matthias A1 - Zörner, Wilfried A1 - Hudde, Jessica A1 - Schwarz, Björn A1 - Faßauer, Burkhardt A1 - Dahmen, Markus A1 - Rieke, Christian A1 - Herbert, Johannes A1 - Thrän, Daniela T1 - How to measure flexibility – Performance indicators for demand driven power generation from biogas plants JF - Renewable Energy Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.renene.2018.10.021 SN - 0960-1481 SP - 135 EP - 146 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rupp, Matthias A1 - Rieke, Christian A1 - Handschuh, Nils A1 - Kuperjans, Isabel T1 - Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities JF - Transportation Research Part D: Transport and Environment N2 - In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.trd.2020.102293 SN - 1361-9209 VL - 81 IS - Article 102293 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Krumbe, Christoph A1 - Schumacher, Katharina A1 - Groebel, Simone A1 - Spelthahn, Heiko A1 - Stellberg, Michael A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1340 EP - 1344 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Cheenakula, Dheeraja A1 - Nikolausz, Marcell A1 - Krafft, Simone A1 - Harms, Hauke A1 - Kuperjans, Isabel T1 - Design and construction of a new reactor for flexible biomethanation of hydrogen JF - Fermentation N2 - The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h−1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested. KW - methanation KW - plug flow reactor KW - bubble column KW - bio-methane KW - power-to-gas Y1 - 2023 U6 - http://dx.doi.org/10.3390/fermentation9080774 SN - 2311-5637 N1 - The article belongs to the Special Issue Fermentation Processes: Modeling, Optimization and Control VL - 9 IS - 8 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rupp, Matthias A1 - Handschuh, Nils A1 - Rieke, Christian A1 - Kuperjans, Isabel T1 - Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany JF - Applied Energy Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.apenergy.2019.01.059 SN - 0306-2619 VL - 237 SP - 618 EP - 634 PB - Elsevier CY - Amsterdam ER -