TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Nouri, Bijan A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation T2 - SolarPACES conference proceedings N2 - Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted. KW - Process prediction KW - DNI forecasting KW - Nowcasting KW - Uncertainty analysis KW - Molten salt receiver system, Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.675 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - Vol. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Atti, Vikrama A1 - Alexopoulos, Spiros A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Dutta, Siddharth A1 - Kioutsioukis, Ioannis T1 - DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook T2 - SolarPACES conference proceedings N2 - This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut Jülich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 % based on the tested days. The result fulfils SIJ’s aim to achieve a reliability of around 70 %, but SIJ aims to still improve the DNI forecast quality. KW - Direct normal irradiance forecast KW - DNI forecast KW - Parabolic trough collector KW - PTC KW - Thermal Energy Storage Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.731 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - VOL. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Schneider, Iesse Peer A1 - Angele, Florian A1 - Atti, Vikrama A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Development of heliostat field calibration methods: Theory and experimental test results T2 - SolarPACES conference proceedings N2 - In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut Jülich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy. KW - Heliostat Field Calibration KW - Unmanned aerial vehicle KW - UAV KW - Quadrocopter KW - Camera system Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.678 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - Vol. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Mission analysis for an advanced solar photon thruster T2 - 60th International Astronautical Congress 2009, IAC 2009 N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made. KW - Interplanetary flight Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 VL - Vol. 8 SP - 6838 EP - 6851 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Design concept and modeling of an advanced solar photon thruster T2 - Advances in the Astronautical Sciences N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail. KW - solar sails Y1 - 2009 SN - 978-087703554-1 SN - 00653438 N1 - 19th AAS/AIAA Space Flight Mechanics Meeting; Savannah, GA; United States; 8 February 2009 through 12 February 2009 SP - 723 EP - 740 PB - American Astronautical Society CY - San Diego, Calif. ER - TY - CHAP A1 - Gehler, M. A1 - Ober-Blöbaum, S. A1 - Dachwald, Bernd T1 - Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies T2 - Procceedings of the 60th International Astronautical Congress N2 - Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments. KW - Spacecraft Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 SP - 1360 EP - 1371 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Stefan, Lukas A1 - Keinz, Jan T1 - Hydrogen combustor integration study for a medium range aircraft engine using the dry-low NOx “Micromix” combustion principle T2 - Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine. Boston, Massachusetts, USA. June 26–30, 2023 N2 - The feasibility study presents results of a hydrogen combustor integration for a Medium-Range aircraft engine using the Dry-Low-NOₓ Micromix combustion principle. Based on a simplified Airbus A320-type flight mission, a thermodynamic performance model of a kerosene and a hydrogen-powered V2530-A5 engine is used to derive the thermodynamic combustor boundary conditions. A new combustor design using the Dry-Low NOx Micromix principle is investigated by slice model CFD simulations of a single Micromix injector for design and off-design operation of the engine. Combustion characteristics show typical Micromix flame shapes and good combustion efficiencies for all flight mission operating points. Nitric oxide emissions are significant below ICAO CAEP/8 limits. For comparison of the Emission Index (EI) for NOₓ emissions between kerosene and hydrogen operation, an energy (kerosene) equivalent Emission Index is used. A full 15° sector model CFD simulation of the combustion chamber with multiple Micromix injectors including inflow homogenization and dilution and cooling air flows investigates the combustor integration effects, resulting NOₓ emission and radial temperature distributions at the combustor outlet. The results show that the integration of a Micromix hydrogen combustor in actual aircraft engines is feasible and offers, besides CO₂ free combustion, a significant reduction of NOₓ emissions compared to kerosene operation. KW - emission index KW - nitric oxides KW - aircraft engine KW - Micromix KW - combustion KW - hydrogen Y1 - 2023 SN - 978-0-7918-8693-9 U6 - http://dx.doi.org/10.1115/GT2023-102370 N1 - Paper No. GT2023-102370, V001T01A022 PB - ASME CY - New York ER - TY - CHAP A1 - Altherr, Lena A1 - Döring, Bernd A1 - Frauenrath, Tobias A1 - Groß, Rolf A1 - Mohan, Nijanthan A1 - Oyen, Marc A1 - Schnittcher, Lukas A1 - Voß, Norbert ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - DiggiTwin: ein interdisziplinäres Projekt zur Nutzung digitaler Zwillinge auf dem Weg zu einem klimaneutralen Gebäudebestand T2 - Tagungsband AALE 2024 : Fit für die Zukunft: praktische Lösungen für die industrielle Automation N2 - Im Hinblick auf die Klimaziele der Bundesrepublik Deutschland konzentriert sich das Projekt Diggi Twin auf die nachhaltige Gebäudeoptimierung. Grundlage für eine ganzheitliche Gebäudeüberwachung und -optimierung bildet dabei die Digitalisierung und Automation im Sinne eines Smart Buildings. Das interdisziplinäre Projekt der FH Aachen hat das Ziel, ein bestehendes Hochschulgebäude und einen Neubau an klimaneutrale Standards anzupassen. Im Rahmen des Projekts werden bekannte Verfahren, wie das Building Information Modeling (BIM), so erweitert, dass ein digitaler Gebäudezwilling entsteht. Dieser kann zur Optimierung des Gebäudebetriebs herangezogen werden, sowie als Basis für eine Erweiterung des Bewertungssystems Nachhaltiges Bauen (BNB) dienen. Mithilfe von Sensortechnologie und künstlicher Intelligenz kann so ein präzises Monitoring wichtiger Gebäudedaten erfolgen, um ungenutzte Energieeinsparpotenziale zu erkennen und zu nutzen. Das Projekt erforscht und setzt methodische Erkenntnisse zu BIM und digitalen Gebäudezwillingen praxisnah um, indem es spezifische Fragen zur Energie- und Ressourceneffizienz von Gebäuden untersucht und konkrete Lösungen für die Gebäudeoptimierung entwickelt. KW - Anomalieerkennung KW - IoT KW - Überwachung & Optimierung KW - DiggiTwin KW - BIM KW - Smart Building KW - Digitalisierung Y1 - 2024 SN - 978-3-910103-02-3 U6 - http://dx.doi.org/10.33968/2024.67 N1 - 20. AALE-Konferenz. Bielefeld, 06.03.-08.03.2024 (Tagungsband unter https://doi.org/10.33968/2024.29) SP - 341 EP - 346 PB - le-tex publishing services GmbH CY - Leipzig ER - TY - CHAP A1 - Wittig, M. A1 - Rütters, René A1 - Bragard, Michael ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - Application of RL in control systems using the example of a rotatory inverted pendulum T2 - Tagungsband AALE 2024 : Fit für die Zukunft: praktische Lösungen für die industrielle Automation N2 - In this paper, the use of reinforcement learning (RL) in control systems is investigated using a rotatory inverted pendulum as an example. The control behavior of an RL controller is compared to that of traditional LQR and MPC controllers. This is done by evaluating their behavior under optimal conditions, their disturbance behavior, their robustness and their development process. All the investigated controllers are developed using MATLAB and the Simulink simulation environment and later deployed to a real pendulum model powered by a Raspberry Pi. The RL algorithm used is Proximal Policy Optimization (PPO). The LQR controller exhibits an easy development process, an average to good control behavior and average to good robustness. A linear MPC controller could show excellent results under optimal operating conditions. However, when subjected to disturbances or deviations from the equilibrium point, it showed poor performance and sometimes instable behavior. Employing a nonlinear MPC Controller in real time was not possible due to the high computational effort involved. The RL controller exhibits by far the most versatile and robust control behavior. When operated in the simulation environment, it achieved a high control accuracy. When employed in the real system, however, it only shows average accuracy and a significantly greater performance loss compared to the simulation than the traditional controllers. With MATLAB, it is not yet possible to directly post-train the RL controller on the Raspberry Pi, which is an obstacle to the practical application of RL in a prototyping or teaching setting. Nevertheless, RL in general proves to be a flexible and powerful control method, which is well suited for complex or nonlinear systems where traditional controllers struggle. KW - Rotatory Inverted Pendulum KW - MPC KW - LQR KW - PPO KW - Reinforcement Learning Y1 - 2024 SN - 978-3-910103-02-3 U6 - http://dx.doi.org/10.33968/2024.53 N1 - 20. AALE-Konferenz. Bielefeld, 06.03.-08.03.2024. (Tagungsband unter https://doi.org/10.33968/2024.29) SP - 241 EP - 248 PB - le-tex publishing services GmbH CY - Leipzig ER - TY - CHAP A1 - Grund, Raphael M. A1 - Altherr, Lena ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - Development of an open source energy disaggregation tool for the home automation platform Home Assistant T2 - Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel N2 - In order to reduce energy consumption of homes, it is important to make transparent which devices consume how much energy. However, power consumption is often only monitored aggregated at the house energy meter. Disaggregating this power consumption into the contributions of individual devices can be achieved using Machine Learning. Our work aims at making state of the art disaggregation algorithms accessibe for users of the open source home automation platform Home Assistant. KW - Home Automation Platform KW - Home Assistant KW - Open Source KW - Machine Learning KW - Energy Disaggregation Y1 - 2023 SN - 978-3-910103-01-6 U6 - http://dx.doi.org/10.33968/2023.02 N1 - 19. AALE-Konferenz. Luxemburg, 08.03.-10.03.2023. BTS Connected Buildings & Cities Luxemburg (Tagungsband unter https://doi.org/10.33968/2023.01) SP - 11 EP - 20 PB - le-tex publishing services GmbH CY - Leipzig ER -