TY - JOUR A1 - Pita, Marcos A1 - Krämer, Melina A1 - Zouh, Jian A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Fernandez, Victor M. A1 - Katz, Evgeny T1 - Optoelectronic Properties of Nanostructured Ensembles Controlled by Biomolecular Logic Systems JF - ACS Nano. 10 (2008), H. 2 Y1 - 2008 SN - 1936-086X SP - 2160 EP - 2166 ER - TY - JOUR A1 - Gun, Jenny A1 - Schöning, Michael Josef A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Katz, Evgeny T1 - Field-Effect Nanoparticle-Based Glucose Sensor on a Chip: Amplification Effect of Coimmobilized Redox Species JF - Electroanalysis. 20 (2008), H. 16 Y1 - 2008 SN - 1521-4109 SP - 1748 EP - 1753 ER - TY - JOUR A1 - Krämer, Melina A1 - Pita, Marcos A1 - Zhou, Jian A1 - Ornatska, Maryna A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - Coupling of Biocomputing Systems with Electronic Chips: Electronic Interface for Transduction of Biochemical Information JF - Journal of Physical Chemistry C: Nanomaterials and Interfaces. 113 (2009), H. 6 Y1 - 2009 SN - 1932-7455 SP - 2573 EP - 2579 PB - American Cemical Society CY - Washington, DC ER - TY - JOUR A1 - Poghossian, Arshak A1 - Krämer, Melina A1 - Abouzar, Maryam H. A1 - Pita, Marcos A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Interfacing of biocomputing systems with silicon chips: Enzyme logic gates based on field-effect devices JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 682 EP - 685 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kramer, Friederike A1 - Halamkova, Lenka A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny A1 - Halamek, Jan T1 - Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American JF - The analyst. August 2013 Y1 - 2013 SN - 1364-5528 (E-Journal); 0003-2654 (Print) VL - Vol. 138 SP - 6251 EP - 6257 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Moseley, Fiona A1 - Halamek, Jan A1 - Kramer, Friederike A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - An enzyme-based reversible CNOT logic gate realized in a flow system JF - Analyst N2 - An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD⁺ and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications. Y1 - 2014 U6 - http://dx.doi.org/10.1039/C4AN00133H SN - 1364-5528 (E-Journal) ; 0003-2654 (Print) VL - 139 IS - 8 SP - 1839 EP - 1842 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Poghossian, Arshak A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane JF - Chemical Communications N2 - Capacitive field-effect sensors modified with a multi-enzyme membrane have been applied for an electronic transduction of biochemical signals processed by enzyme-based AND-Reset and OR-Reset logic gates. The local pH change at the sensor surface induced by the enzymatic reaction was used for the activation of the Reset function for the first time. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C5CC01362C VL - 51 SP - 6564 EP - 6567 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Katz, Evgeny A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics JF - Analytical and Bioanalytical Chemistry N2 - The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a “filter” system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Y1 - 2017 U6 - http://dx.doi.org/10.1007/s00216-016-0079-7 SN - 1618-2650 VL - 409 SP - 81 EP - 94 PB - Springer CY - Berlin ER - TY - JOUR A1 - Honarvarfard, Elham A1 - Gamella, Maria A1 - Channaveerappa, Devika A1 - Darie, Costel C. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - Electrochemically Stimulated Insulin Release from a Modified Graphene–functionalized Carbon Fiber Electrode JF - Electroanalysis N2 - A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species. Y1 - 2017 U6 - http://dx.doi.org/10.1002/elan.201700095 SN - 1521-4109 VL - 29 IS - 6 SP - 1543 EP - 1553 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gamella, Maria A1 - Zakharchenko, Andrey A1 - Guz, Nataliia A1 - Masi, Madeline A1 - Minko, Sergiy A1 - Kolpashchikov, Dmitry M. A1 - Iken, Heiko A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - DNA computing system activated by electrochemically triggered DNA realease from a polymer-brush-modified electrode array JF - Electroanalysis N2 - An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA)/poly(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAEMA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at −1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals. Y1 - 2017 U6 - http://dx.doi.org/10.1002/elan.201600389 SN - 1521-4109 VL - 29 IS - 2 SP - 398 EP - 408 PB - Wiley-VCH CY - Weinheim ER -