TY - CHAP A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Peter ED - Bartz, Wilfried J. T1 - Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship T2 - Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009 N2 - The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 % v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security. Y1 - 2009 SN - 978-3-924813-75-8 SP - 237 EP - 244 PB - Technische Akademie Esslingen (TAE) CY - Ostfildern ER - TY - RPRT A1 - Bohn, Dieter A1 - Funke, Harald A1 - Gier, J. T1 - Untersuchung des Strömungsausgleichs in den Schaufelreihen ungleichförmig ungeströmter Turbomaschinen N2 - Zwischenbericht über das Vorhaben FVV - Nr. 665 (AIF-Nr. 10780) Heft R 498(1998) S. 123-136. Informationstagung Turbinen, Frühjahr 1998, Frankfurt KW - Strömungsmaschine KW - Turbine KW - Strömungsausgleich KW - Turbine Y1 - 1998 ER - TY - RPRT A1 - Bohn, Dieter A1 - Funke, Harald A1 - Gier, J. A1 - Heuer, T. T1 - Untersuchung des Strömungsausgleichs in den Schaufelreihen ungleichförmig ungeströmter Turbomaschinen N2 - Abschlussbericht über das Vorhaben FVV-Nr. 665 (AIF-Nr. 10780). Laufzeit 01.08.1996 bis 31.10.1999. Heft R 504 (1999). S. 99-124. Informationstagung Turbinen, Herbst 1999, Heidelberg. KW - Strömungsmaschine KW - Turbine KW - Strömungsausgleich KW - Turbine Y1 - 1999 ER - TY - JOUR A1 - Robinson, A. E. A1 - Rönna, Uwe A1 - Funke, Harald T1 - Testing of a 10 kW diffusive micro-mix combustor for hydrogen-fuelled micro-scale gas turbines JF - International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications <7, 2007, Freiburg, Breisgau> ; PowerMEMS ; 7 Y1 - 2007 SP - 225 EP - 228 ER - TY - JOUR A1 - Bécret, P. A1 - Grossen, J. A1 - Trilla, J. A1 - Robinson, A. A1 - Bosschaerts, W. A1 - Funke, Harald A1 - Hendrick, P. T1 - Testing and numerical study of a 10 kW hydrogen micro combustor JF - International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications <7, 2007, Freiburg, Breisgau> ; PowerMEMS ; 7 Y1 - 2007 SP - 367 EP - 370 ER - TY - CHAP A1 - Funke, Harald A1 - Keinz, Jan A1 - Börner, S. A1 - Hendrick, P. A1 - Elsing, R. T1 - Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine T2 - Progress in propulsion physics ; Volume 8 Y1 - 2016 SN - 978-5-94588-191-4 U6 - http://dx.doi.org/10.1051/eucass/201608409 SP - 409 EP - 426 PB - EDP Sciences CY - o.O. ER - TY - JOUR A1 - Bohn, D. A1 - Funke, Harald A1 - Gier, J. T1 - Temperature jet development in a cross-over channel JF - Third European Conference on Turbomachinery - fluid dynamics and thermodynamics : : 2 - 5 March 1999, Royal National Hotel, London, UK / organized by the Energy Transfer and Thermofluid Mechanics Group of the Institution of Mechanical Engineers (IMechE); with support and sponsorship from European Commission / Vol. B. Y1 - 1999 N1 - C557/158/99 ; IMechE conference transactions 1999-1B SP - 671 EP - 680 PB - Professional Engineering Publ. CY - Bury St. Edmunds ER - TY - RPRT A1 - Bohn, Dieter A1 - Funke, Harald A1 - Heuer, T. T1 - Sonden-Schaufel-Interaktion bei stationären Messungen mit pneumatischen Strömungssonden in engen Axialspalten N2 - Abschlussbereicht über das Anschlussvorhaben zu FVV-Nr. 665 (AIF-Nr. 10780). Heft R 511 (2001). 23 S. Informationstagung Turbinen, Frühjahr 2001, Frankfurt. KW - Strömungsmaschine KW - Turbine KW - Strömungsausgleich KW - Turbine KW - Strömungssonde Y1 - 2001 ER - TY - RPRT A1 - Esch, Thomas A1 - Funke, Harald A1 - Roosen, Petra T1 - SIoBiA – Safety Implications of Biofuels in Aviation N2 - Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called “MOGAS” (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 % volume per volume (v/v) (bio-)methanol or up to 5 % v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline’s chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots. Y1 - 2010 N1 - Analysis of the safety implications of the use of biofuels (ethanol admixture) for piston engines and general aviation aircraft and assessment of potential environmental benefits. PB - EASA CY - Köln ER - TY - JOUR A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Petra T1 - Powertrain Adaptions for LPG Usage in General Aviation JF - MTZ worldwide N2 - In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences. Y1 - 2022 U6 - http://dx.doi.org/10.1007/s38313-021-0756-6 VL - 2022 IS - 83 SP - 58 EP - 62 PB - Springer Nature CY - Basel ER -