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Abstract: A new and simple method for nanostructuring using conventional 
photolithography and layer expansion or pattern-size reduction technique is presented, which 
can further be applied for the fabrication of different nanostructures and nano-devices. The 
method is based on the conversion of a photolithographically patterned metal layer to a 
metal-oxide mask with improved pattern-size resolution using thermal oxidation. With this 
technique, the pattern size can be scaled down to several nanometer dimensions. The 
proposed method is experimentally demonstrated by preparing nanostructures with different 
configurations and layouts, like circles, rectangles, trapezoids, “fluidic-channel”-, 
“cantilever”- and meander-type structures.  
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Introduction 

The development of new and easy techniques for the fabrication of nanostructures has been of great 
interest not only as a possibility for increasing the device-packing density and reducing power 
consumption, but also for the creation of a new class of nanoelectronic devices, like single-electron 
transistors [1] or metal/insulator tunnel transistors [2,3], which are based on physico-chemical 
phenomena that occur on the nano-scale level. Moreover, a coupling of biorecognition elements on 
nanostructures might allow a creation of functional hybrid systems with a molecular-scale proximity 
between the molecular recognition and transduction element. Such functional hybrid systems (i.e., the 
“marriage” of biomolecules and nanostructures) are essential not only for a new generation of 
chemical and biological nano-sensors with unique functional and application possibilities, but also for 
the fundamental research of biological molecules (DNA, RNA, immunospecies, proteins, etc.) and 
living cells.  

At present, the minimum size of Si and GaAs devices is down to 0.25 µm or even less. Current 
CMOS (complementary metal-oxide-semiconductor field-effect transistor) technology will be 
extended at least to a 50 nm generation by the year 2012 [4] and a minimum transistor channel length 
of 20-22 nm is predicted for the year 2014 [5]. Although the resolution of optical lithography 
continuously increases, to date, for the fabrication of structures below 100 nm, different complicated, 
cost-intensive and low-throughput techniques (electron- or ion-beam lithography, scanning tunnel or 
atomic force microscopy) are often utilised [4]. Therefore, recently, some non-conventional techniques 
in combination with conventional photolithography have been proven for the preparation of nano-
pattern mask and nano-scale structures. These techniques include a controlled size-reduction using the 
oxidation of Si [6] or laser-assisted electrochemical etching [7], a chemical-mechanical polishing [8], a 
decrease of separation between the metallic electrodes by means of an electro-deposition from an 
electrolyte solution [9], methods that utilise a sidewall structure [5,10,11], a self-aligned plasma 
etching of a silicon dioxide layer and a silicon substrate [12], a resist thermal reflow and shrinking 
technique [13], or a lateral partially anodic oxidation of the side-edge of photolithographically 
structured metallic films (e.g., Ti) in electrolyte solution [14-16], etc.  

As an alternative, a new and simple method for the preparation of self-aligned nanostructures using 
conventional photolithography and layer expansion or pattern-reduction techniques has recently been 
proposed by the authors [17]. The method was experimentally demonstrated by exemplarily preparing 
a nano-gap between two “cantilever”-type structures [18]. For this type of structure, the pattern-size of 
the photolithographically patterned original layer was reduced by a factor of more than 3 [18]. In this 
work, the feasibility of the proposed method for the preparation of nanostructures with different 
configurations and layouts such as circles, rectangles, trapezoids, “fluidic-channel”-, “cantilever”- and 
meander-type structures is studied. In addition, we will also demonstrate that by using the layer-
expansion technique, the pattern size can be scaled down to several nanometer dimensions.   
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Method 

The proposed nanostructuring method combines the conventional photolithography and the layer 
expansion or pattern-size reduction technique, which is based on a complete conversion of a 
photolithographically patterned metal layer to a metal-oxide mask using the thermal oxidation process. 
Fig. 1 schematically shows the technological process steps for the fabrication of a nano-scaled metal-
oxide mask and nanostructures according to the proposed method. At first, the metal layer (exemplary 
Ta) is deposited onto the substrate by using a conventional microfabrication technique (Fig. 1(a)) and 
then, structured using conventional photolithography to form the desired metal pattern with a pattern-
size resolution, aph, defined by the available photolitographic technique (Fig. 1(b)). Then, the metal 
layer is converted to a metal-oxide (Ta2O5) layer by thermal oxidation, resulting in an expansion of the 
layer volume and a reduction of the pattern size. In this way, a self-aligned metal-oxide mask with a 
pattern size (aox < aph) below the photolithographic resolution is formed (Fig. 1(c)). By a given 
resolution of the lithographically patterned metal layer, the pattern size of the metal-oxide mask, aox, 
will be determined by the thickness of the metal layer (dm) and its ability to expand as it is converted to 
the respective metal oxide. Metals with a relatively low oxidation temperature and a high ability to 
expand by conversion to the metal-oxide (e.g., Ta, Ti, etc.) are more suitable as materials for such a 
metal layer. 

 

Figure 1. Schematic of the technological process steps for the fabrication of nanostructures: a) 
deposition of the metallic layer (Ta); b) patterning of the metallic layer with a pattern-size resolution 
(aph) of photolithography; c) conversion of the metallic pattern to a metal-oxide layer by thermal 
oxidation, resulting in a formation of a self-aligned metal-oxide mask with a pattern size (aox) below 
the photolithographic resolution; d) nano-gap between two metallic electrodes; e) nano-biosensor by 
coupling of biomolecules onto the already prepared nanostructure. 

Thus, by using this technique, dependent on the thickness of the metal layer and its ability to 
expand as it is converted to the respective metal oxide, the pattern-size of the original 
photolitographically patterned structure can be scaled down to several nanometer dimensions. The 
obtained metal-oxide pattern may then, be used as a mask to realise different nanostructures and nano-
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devices, e.g., nano-slits, nano-trenches, nano-gaps, nano-electrodes, nano-fluidic channels, nano-wires, 
single-electron transistors, organic field-effect transistors, etc. As an example, Fig. 1(d) schematically 
shows a nano-gap between two metallic electrodes. In this case, the metal-oxide mask is formed onto 
the electrode material having a much higher oxidation temperature than that of the patterned metal 
layer of the mask. Then, the electrode layer is etched using the metal-oxide mask to form a nanometer-
scaled gap between the two metal electrodes. In addition, different (bio-)chemical nano-sensors can be 
realised by coupling or immobilising various chemical and biological recognition elements onto the 
already prepared nanostructures as it is schematically shown in Fig. 1(e). Moreover, this technique is 
very simple and more realistic to obtain nanometer-scale structures over a large area and with different 
layouts at both the laboratory and mass-production level.  

Experimental 

In this study, Ta has been chosen for the fabrication of the metal-oxide mask due to the relatively 
low oxidation temperature of Ta (450-600°C), the high ability to expand by conversion to the metal 
oxide (the original thickness of the Ta layer is increased more than 2–2.5 times as it is converted to 
Ta2O5 by thermal oxidation [19-21]) and the high chemically resistant properties of Ta2O5 [22-24]. On 
the other hand, the well-known high pH-sensitive properties of Ta2O5 films [21,25-27] are very useful 
for the further development of different (bio-)chemical nano-sensors. 

Ta films of different thicknesses from 200 to 500 nm have been deposited onto a p-Si substrate by 
means of electron-beam evaporation or sputtering techniques and then, are patterned by 
photolithography using a specially designed mask (AutoCAD program was used for the mask 
development). In order to test the feasibility of the proposed technique for the fabrication of 
nanostructures with different configurations, the mask layout involves structures with different sizes 
and configurations (circles, squares, rectangles, trapezoids, meander-shaped structures, “fluidic-
channel”- and “cantilever”-type configurations). A lift-off technique or RIE process (using a sulfur 
hexafluoride SF6) has been used to pattern the Ta layer according to the mask layout. Finally, the 
patterned Ta layers were oxidised at a temperature of 510-517°C in dry O2 atmosphere to form the 
self-aligned Ta2O5 mask. The investigations of the effectivity (degree) of the expansion of the 
patterned Ta structures, dependent on the oxidation time, have showed [18] that at an oxidation 
temperature of 510-530°C and an oxidation time of about 2.5-3 h is sufficient to completely oxidise a 
500 nm Ta layer. The patterned structures have been characterised before the oxidation and after 
oxidation by means of scanning electron microscopy (SEM). 

Results and discussions 

Fig. 2 exemplarily presents an SEM picture of a prepared nano-slit. For comparison, the SEM 
picture of the slit before the oxidation is presented, too. The conversion of the Ta layer to the Ta2O5 
layer by thermal oxidation results in an expansion of the layer volume, including the lateral expansion 
and hence, to a decrease in the width of the slit. After oxidation of the patterned 500 nm thick Ta layer 
at 515°C for about 3 h, the original (photolitographically patterned) slit of 1420 nm in width has been 
reduced down to 330 nm. Thus, after oxidation, the pattern-size resolution was improved for about 
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1100 nm or by a factor of more than 4. By applying even thicker Ta layers or photolitographically 
patterned structures with a pattern size of less than ~1 µm, slits with a width of a few nanometer can be 
formed by using this technique. 

Fig. 3 shows SEM photographs of a circle-type structure before (a) and after (b) oxidation of the 
photolithographically patterned Ta layer. The diameter of the circle before the oxidation was 1230 nm. 
After Ta oxidation, a circle-like structure has been obtained with a diameter of 620 nm. Currently, with 
a circle-type configuration, “only” a pattern-size reduction by the factor of about 2 has been achieved, 
which is smaller than that obtained for other configurations studied in this work. In addition, the 
obtained structure has not an exactly uniform circle-shaped configuration. A possible explanation for 
such a behavior could be a competition expansion of the Ta layer during the oxidation process along 
the different radial directions parallel to the surface of the circular structure. 

 

Figure 2. Scanning electron microscopy picture of prepared nano-slit before (a) and after (b) Ta 
oxidation. A pattern-size reduction of about 1100 nm or by a factor of more than 4 has been achieved. 

 

Figure 3. Scanning electron microscopy picture of a prepared circle-shaped structure before (a) and 
after (b) Ta oxidation. A pattern-size reduction of about 610 nm or by a factor of about 2 has been 
achieved. 

Best results have been obtained with a so-called “fluidic-channel”-type structure (see Figs. 4 and 5). 
The original width of the structure before the oxidation of the photolithography patterned Ta layer to 
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Ta2O5 was 1420 nm (Fig. 4(a)). After oxidation of the patterned 500 nm thick Ta layer at 515°C for 
about 2.5 h, the resulting width of the structure was 120 nm (Fig. 4(b)). Thus, after oxidation, the 
pattern-size was reduced for about 1300 nm or by a factor of about 12. As it can be seen from Fig. 5, 
with this “fluidic-channel”-type configuration, after oxidation even structures below 10 nm are 
possible to prepare. Thus, a pattern-size reduction by a factor of more than 100 can be achieved. 
However, the degree of lateral expansion during the conversion of the Ta layer to Ta2O5 was not 
sufficiently uniform. As it can be seen from Figs. 4 and 5, a large expansion has been observed in the 
middle regions in comparison to the edges of the structure. The reasons for this effect are not yet clear 
in detail. 

 

Figure 4. Scanning electron microscopy picture of a prepared “fluidic-channel”-type structure before 
(a) and after (b) Ta oxidation. A pattern-size reduction of about 1300 nm or by a factor of about 12 has 
been achieved. 

 

Figure 5. Experimental demonstration of feasibility of the proposed method for the preparation of 
even structures below 10 nm. 
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Conclusions 

A new method for the preparation of self-aligned nanostructures by combining conventional 
photolithography and layer expansion or pattern-size reduction technique has been proposed and 
realised. The method is based on a complete conversion of a photolithographically patterned metal 
layer to a metal-oxide mask with improved pattern-size resolution using the thermal oxidation process. 
By applying this technique, dependent on the thickness of the metal layer and its ability to expand, the 
pattern-size resolution of conventional photolithography can be scaled down to nanometer dimensions. 
Moreover, this technique is very simple, easy and more realistic to obtain nanometer-scale structures 
over a large area and with different layouts at both the laboratory and mass-production level. The 
proposed method has been experimentally demonstrated by preparing nanostructures with different 
configurations and layouts. Moreover, the feasibility of this method for the preparation of even 
structures below 10 nm has been experimentally validated. Nonetheless, due to a possible competition 
expansion of the Ta layer during the oxidation process along different directions parallel to the surface, 
the obtained nanostructures are not sufficiently uniform. Therefore, further experiments are needed in 
order to study the specificity of lateral expansion of the Ta layers of different layouts during the 
oxidation processes. These investigations might be useful in order to optimise the layouts of the 
original structures (before oxidation) as well as to obtain the desired or required configuration of the 
final nanostructures (i.e., after oxidation).  
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