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SUMMARY
We extend the modeling of a cardiac tissue composite by proper homogenization of all the different
mechanical contributions to the constitutive tensor as well as the contributions to the diffusion ten-
sor and the electrical source current in the parabolic system. The model is applied to support the
interpretation of experimental findings in drug testing being able to explain the results at the cellular
level. Moreover the model can be used for the prediction of drug effects on cardiac tissue and for
computational studies of cardiomyocyte and cardiac tissue electromechanics.
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1 INTRODUCTION

Cardiac tissue constructs or engineered heart tissues are a valuable tool for in vitro drug testing, for
the analysis of gene expression or the investigation of diseases on both, the mechanical and electro-
physiological level. Different experimental setups all over the world are created in order to assess the
mechanical or electrophysiological behavior of those tissues and their parameters, e.g. [1] and [2]. As
these setups provide only macroscopic results (tissue level), computational models and simulations
are employed in order to resolve and elucidate experimental findings at the microscale (cellular level).

We recently reported about a computational model of a cardiac tissue construct [3] that is illustrated
in fig. 1. It consists of a cardiac monolayer composed of an extracellular matrix (ECM), atrial,
ventricular and nodal cardiomyocytes (CM) and fibroblasts. The tissue is cultivated on top of a
circular silicone membrane. The whole composite tissue can be placed into an inflation setup (cf. fig.
2) in order to measure for instance beating force, beating frequency and cardiac throughput.

Figure 1: Schematical drawing of the investigated
tissue consisting of a silicone membrane and en-
gineered heart tissue that in turn consists of an
ECM and potentially multiple cell types

Figure 2: Bulge test in a CellDrumTM [3]

Herein we extend the modeling of this composite presented in [3] by proposing a framework that
properly homogenizes all the different mechanical contributions to the constitutive tensor as well as
the contributions to the diffusion tensor and the electrical source current in the parabolic system.
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2 HOMOGENIZATION OF MECHANICAL STRESS

The first step is to represent the Cauchy stress in the two incompressible layers in parallel by

σs = 2J−1B
∂Ψs

∂B
− pI (1)

σt = 2J−1B
∂Ψt

∂B
− pI , (2)

with Cauchy stress σ∗ and strain energy Ψ∗ in the respective silicone (s) or tissue (t) layer, the deter-
minant of the deformation gradient J , the left Cauchy-Green tensor B and the hydrostatic pressure
p. In Voigt’s parallel model the total composite stress in the structure can be written as

σ = θsσ
s + θtσ

t , (3)

with volume fractions θs and θt, at which θs + θt = 1. Following the isostrain model, we assume
equal kinematics for both layers, i.e. εs = εt = ε.

We model the silicone layer using an incompressible neo-Hookean strain energy function Ψs
nH , such

that
σs = 2J−1B

∂Ψs
nH

∂B
− pI . (4)

The modeling of the cardiac tissue though is more complicated due to its complex structure. Besides
the neglect of viscoelastic effects and the microscopically verified assumption of global isotropy, the
modeling approach is based on the one presented in [5]. Following the active stress formulation, the
Cauchy stress is the sum of cellular and extracellular matrix contributions

σt = σc + σm , (5)

wherein the latter one is again modeled by a neo-Hookean material law similarly to eq. (4).

The cellular model is depicted in fig. 3 and following the derivations presented in [5] one ends up
with

σt = 2J−1B
∂Ψm

nH

∂B
+

1

4
ω0J

−1B
∂Ψc

nH

∂B
+

1

2
T0(B, t)I − pI , (6)

with ω0 = Nl0A0 a dimensionless constant transforming cell stress to global stress and T0 =
Nl0F0(λ, t) the contractile part of the stress. N, l0, A0 and λ are the number of cells per unit vol-
ume, the initial cell length, its initial cross-section and the current cellular stretch, respectively. F0,
the actively generated force is determined from models of cellular electrophysiology and excitation-
contraction coupling.

The investigated tissue consists of four different cell types, namely ventricular, atrial and nodal CM
and fibroblasts. In the short-term experiments we are focusing at, it is realistic to assume that ε =
εm = εc, independent of the cell type thus the arithmetic average

σc = θvσ
v + θaσ

a + θnσ
n + θfσ

f (7)

for the cellular Cauchy stress can be employed with volume fractions θ∗ that in sum give 1. The
mechanical model can then be summarized as

σ = 2θsJ
−1B

∂Ψs
nH(B;Cs

10)

∂B
+ θt

(
2J−1B

∂Ψm
nH(B;Cm

10)

∂B
(8)

+
∑

∗=v,n,a,f

θ∗

(
1

4
ω∗
0J

−1B
∂Ψ∗

nH

∂B
+

1

2
T ∗
0 (B, t)I

))
− pI , (9)

with silicone and ECM neo-Hookean parameters Cs
10 and Cm

10, respectively.
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Figure 3: Modified Hill’s model for a contractile
cell having a series passive element (SE), a con-
tractile element (CE) and a parallel passive ele-
ment (PE) related to the intrinsic passive proper-
ties of the filaments

Figure 4: Flowchart of the incremental algorithm,
the nonlinear mechanical and electrical model

3 HOMOGENIZATION OF ACTION POTENTIAL AND IONIC CURRENTS

Concerning the homogenization of the action potential and the whole electrophysiology of the cells
we follow the framework of Keip et al. [6]. The overall parabolic system reads as

Cm
∂Vm
∂t

= ∇ (G(B)∇Vm)− Im , (10)

with action potential Vm, cell membrane capacitanceCm, conductanceG and ionic membrane current
Im. Each cell type is described by an own ordinary differential equation system

∂V ∗
m

∂t
= V̇ ∗

m =
1

C∗
m

(
I∗stim −

n∑
i=1

I∗i (g∗x1
, g∗x2

, ...)

)
(11)

∂g∗x(Vm)

∂t
= α+

x (V ∗
m)(1− g∗x) + α−

x (Vm)g∗x , (12)

that governs the cellular electrophysiology. In eq. (12), gx are ion channel gates and α+
x and α−

x

are respective activation and inactivation constants. Analogously to the averaging processes of the
mechanical stress, in [6] it is proposed to approximate V̇m by Reuss or Voigt bounds.

In order to stay time-consistent, the chosen model of excitation-contraction coupling [7] is imple-
mented at the level of the ordinary differential equations as well.

4 SUMMARY

The proposed modeling approach is capable of simulating separate cellular action potentials that
are homogenized in order to give a global action potential that is propagated through the tissue. In
the subsequent nonlinear mechanical computation the active stress contribution is computed based
on the activation variable determined in the electrophysiological computation. In the next iteration
the mechanical strains serve as an input to the electrophysiological problem in order to allow for a
mechano-electrical feedback. The whole algorithm is depicted in fig. 4, not showing the excitation-
contraction coupling that is part of the electrophysiology.

From the bulge test drawn in fig. 2 we are able to measure most of the required mechanical material
parameters. Concerning the electrophysiological part of the model we rely on published literature
data for the parameterization although it is already planned to measure individual currents in other
experimental setups to better model specific human-induced pluripotent stem cell-derived CMs.

By using this homogenization framework we expect to be able to more accurately capture the shape
of the experimentally determined deflection curve as shown in fig. 5. The asymmetry, the size,
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the durance and the integral below this curve characterize the contraction behavior in many aspects.
Incorporating homogenized action potential propagation and electrophysiological and mechanical
inhomogeneities will lead to a more accurately simulated curve shape.

Figure 5: Comparison of deflection curves in ex-
periment (dashed), simulation paced at 0.75Hz
(triangular markers) and simulation paced at 1Hz
(rectangular markers)

Further, fig. 5 shows that the shape of the deflec-
tion curve strongly depends on the model param-
eterization, e.g. here on the beating frequency
that affects the deflection through the so-called
force-frequency relationship. Thus it is also es-
sential to adjust the cellular models.

In the near future the model is intended to be
used for drug prediction, for analyzing the influ-
ence of fibroblast concentration on the beating
force as initiated in [8] and for the investigation
of mechano-electrical and electro-mechanical
feedback which currently is implemented rather
phenomenologically. Another very important
analysis will cover the computational costs be-
cause it is expected that the numerous and elab-
orate ordinary differential equation systems con-
sume much computation time. Depending on the
results this might limit the applicability of the
model to small tissue samples or needs a higher degree of parallelization than currently used.
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