TY - JOUR A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Krischer, M. A1 - Wenzel, L. A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor T2 - Procedia Engineering N2 - A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers. KW - Field-effect sensor KW - enzymatic (bio)degradation KW - poly(d, l-lactic acid) KW - in-situ monitoring KW - impedance spectroscopy Y1 - 2014 UR - https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/6816 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 1314 EP - 1317 PB - Elsevier CY - Amsterdam ER -