@article{KotliarVilserNageletal.2004, author = {Kotliar, Konstantin and Vilser, Walthatd and Nagel, Edgar and Lanzl, Ines M.}, title = {Retinal vessel reaction in response to chromatic flickering light / Kotliar, Konstantin E. ; Vilser, Walthard ; Nagel, Edgar ; Lanzl, Ines M.}, series = {Graefe's Archive for Clinical and Experimental Ophthalmology. 242 (2004), H. 5}, journal = {Graefe's Archive for Clinical and Experimental Ophthalmology. 242 (2004), H. 5}, publisher = {-}, isbn = {1435-702X}, pages = {377 -- 392}, year = {2004}, language = {en} } @article{NeumaierKotliarHaerenetal.2021, author = {Neumaier, Felix and Kotliar, Konstantin and Haeren, Roel Hubert Louis and Temel, Yasin and L{\"u}ke, Jan Niklas and Seyam, Osama and Lindauer, Ute and Clusmann, Hans and Hescheler, J{\"u}rgen and Schubert, Gerrit Alexander and Schneider, Toni and Albanna, Walid}, title = {Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice—An in- vivo Evaluation Using Retinal Vessel Analysis (RVA)}, series = {Frontiers in Neurology}, volume = {12}, journal = {Frontiers in Neurology}, publisher = {Frontiers}, doi = {10.3389/fneur.2021.659890}, pages = {1 -- 11}, year = {2021}, language = {en} } @article{MenzelKotliarLanzl2009, author = {Menzel, C. and Kotliar, Konstantin and Lanzl, I.}, title = {Retrospektive Untersuchung jahreszeitlich bedingter Einflussfaktoren auf den Augeninnendruck therapierter Glaukompatienten}, series = {Der Ophthalmologe}, volume = {106}, journal = {Der Ophthalmologe}, number = {11}, publisher = {-}, isbn = {1433-0423}, pages = {1006 -- 1011}, year = {2009}, language = {de} } @article{KurulganDemirciDemirciLinderetal.2012, author = {Kurulgan Demirci, Eylem and Demirci, Taylan and Linder, Peter and Trzewik, J{\"u}rgen and Gierkowski, Jessica Ricarda and Gossmann, Matthias and Kayser, Peter and Porst, Dariusz and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells}, series = {Journal of Bioscience and Bioengineering}, volume = {113}, journal = {Journal of Bioscience and Bioengineering}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1347-4421}, doi = {10.1016/j.jbiosc.2012.03.019}, pages = {212 -- 219}, year = {2012}, abstract = {All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models.}, language = {en} } @article{KolditzAlbinBrueggemannetal.2016, author = {Kolditz, Melanie and Albin, Thivaharan and Br{\"u}ggemann, Gert-Peter and Abel, Dirk and Albracht, Kirsten}, title = {Robotergest{\"u}tztes System f{\"u}r ein verbessertes neuromuskul{\"a}res Aufbautraining der Beinstrecker}, series = {at - Automatisierungstechnik}, volume = {64}, journal = {at - Automatisierungstechnik}, number = {11}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-677X}, doi = {10.1515/auto-2016-0044}, pages = {905 -- 914}, year = {2016}, abstract = {Neuromuskul{\"a}res Aufbautraining der Beinstrecker ist ein wichtiger Bestandteil in der Rehabilitation und Pr{\"a}vention von Muskel-Skelett-Erkrankungen. Effektives Training erfordert hohe Muskelkr{\"a}fte, die gleichzeitig hohe Belastungen von bereits gesch{\"a}digten Strukturen bedeuten. Um trainingsinduzierte Sch{\"a}digungen zu vermeiden, m{\"u}ssen diese Kr{\"a}fte kontrolliert werden. Mit heutigen Trainingsger{\"a}ten k{\"o}nnen diese Ziele allerdings nicht erreicht werden. F{\"u}r ein sicheres und effektives Training sollen durch den Einsatz der Robotik, Sensorik, eines Regelkreises sowie Muskel-Skelett-Modellen Belastungen am Zielgewebe direkt berechnet und kontrolliert werden. Auf Basis zweier Vorstudien zu m{\"o}glichen Stellgr{\"o}ßen wird der Aufbau eines robotischen Systems vorgestellt, das sowohl f{\"u}r Forschungszwecke als auch zur Entwicklung neuartiger Trainingsger{\"a}te verwendet werden kann.}, language = {de} } @article{FrankBuchwaldPennekampetal.2009, author = {Frank, T. and Buchwald, D. and Pennekamp, W. and Reber, D. and Sponagel, Stefan and Laszkovics, A. and Weber, Hans-Joachim}, title = {R{\"o}ntgenologische Untersuchung der Str{\"o}mungseigenschaften funktioneller Komponenten der Herz-Lungen-Maschine}, series = {Kardiotechnik. 18 (2009), H. 2}, journal = {Kardiotechnik. 18 (2009), H. 2}, isbn = {0941-2670}, pages = {31 -- 35}, year = {2009}, language = {de} } @article{FrotscherMuanghongDursunetal.2016, author = {Frotscher, Ralf and Muanghong, Danita and Dursun, G{\"o}zde and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue}, series = {Journal of Biomechanics}, volume = {49}, journal = {Journal of Biomechanics}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290 (Print)}, doi = {10.1016/j.jbiomech.2016.01.039}, pages = {2428 -- 2435}, year = {2016}, abstract = {We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures.}, language = {en} } @article{RittwegerAlbrachtFluecketal.2018, author = {Rittweger, J{\"o}rn and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Longa, Emanuela and Moriggi, Manuela and Seynnes, Olivier and Di Giulio, Irene and Tenori, Leonardo and Vignoli, Alessia and Capri, Miriam and Gelfi, Cecilia and Luchinat, Claudio and Franceschi, Claudio and Bottinelli, Roberto and Cerretelli, Paolo and Narici, Marco}, title = {Sarcolab pilot study into skeletal muscle's adaptation to longterm spaceflight}, series = {npj Microgravity}, volume = {4}, journal = {npj Microgravity}, number = {1}, publisher = {Nature Portfolio}, issn = {2373-8065}, doi = {10.1038/s41526-018-0052-1}, pages = {1 -- 9}, year = {2018}, language = {en} } @article{SponagelKilthauSpies1987, author = {Sponagel, Stefan and Kilthau, G. and Spies, K. H.}, title = {Sealing mechanism of lip seals}, series = {Eleventh 11th International Conference on Fluid Sealing : proceedings of the 11th Internat. Conference on Fluid Sealing, held at Cannes, France 8 - 10 April, 1987 / organised and sponsored by BHRA, the Fluid Engineering Centre. Ed. B. S. Nau}, journal = {Eleventh 11th International Conference on Fluid Sealing : proceedings of the 11th Internat. Conference on Fluid Sealing, held at Cannes, France 8 - 10 April, 1987 / organised and sponsored by BHRA, the Fluid Engineering Centre. Ed. B. S. Nau}, publisher = {Elsevier}, address = {London}, isbn = {3-540-51383-3}, pages = {748 -- 772}, year = {1987}, language = {en} } @article{Staat1993, author = {Staat, Manfred}, title = {Sensitivity of and Influences on the Reliability of an HTR-Module Primary Circuit Pressure Boundary}, series = {Transactions of the 12th International Conference on Structural Mechanics in Reactor Technology (SMiRT-12) / Kussmaul, K. [ed]}, journal = {Transactions of the 12th International Conference on Structural Mechanics in Reactor Technology (SMiRT-12) / Kussmaul, K. [ed]}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0-444-81515-5}, pages = {147 -- 152}, year = {1993}, language = {en} }