@article{BelavyAlbrachtBruggemannetal.2016, author = {Belavy, Daniel L. and Albracht, Kirsten and Bruggemann, Gert-Peter and Vergroesen, Pieter-Paul A. and Dieen, Jaap H. van}, title = {Can exercise positively influence the intervertebral disc?}, series = {Sports Medicine}, volume = {46}, journal = {Sports Medicine}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1179-2035}, doi = {10.1007/s40279-015-0444-2}, pages = {473 -- 485}, year = {2016}, abstract = {To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.}, language = {en} } @article{KotliarLanzl2011, author = {Kotliar, Konstantin and Lanzl, Ines M.}, title = {Can vascular function be assessed by the interpretation of retinal vascular diameter changes?}, series = {Investigative Ophthalmology \& Visual Science, IOVS. 52 (2011), H. 1}, journal = {Investigative Ophthalmology \& Visual Science, IOVS. 52 (2011), H. 1}, publisher = {ARVO}, address = {Rockville, Md.}, isbn = {0146-0404}, pages = {635 -- 636}, year = {2011}, language = {en} } @article{TemizArtmannYalcinResmietal.2002, author = {Temiz Artmann, Ayseg{\"u}l and Yalcin, Ozlem and Resmi, Halil and Baskurt, Oguz K.}, title = {Can white blood cell activation be one of the major factors that affect hemorheological parameters during and after exercise?}, series = {Clinical Hemorheology and Microcirculation. 26 (2002), H. 3}, journal = {Clinical Hemorheology and Microcirculation. 26 (2002), H. 3}, isbn = {1386-0291}, pages = {189 -- 193}, year = {2002}, language = {en} } @article{JanThimoBauerBieleetal.2019, author = {Jan Thimo, Grundmann and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} } @article{Artmann2000, author = {Artmann, Gerhard}, title = {Cellular engineering - a challenge for engineers? / Artmann, G. M.}, series = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, journal = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, isbn = {1862-278X}, pages = {449}, year = {2000}, language = {en} } @article{ArtmannKelemenPorstetal.1998, author = {Artmann, Gerhard and Kelemen, C. and Porst, Dariusz and B{\"u}ldt, G.}, title = {Cellular engineering: Crash tests an menschlichen Erythrozyten geben Aufschluß {\"u}ber versteckte Materialeigenschaften zellul{\"a}rer Proteine / Artmann, G. M. ; Kelemen, Ch. ; Porst, D. ; B{\"u}ldt, G. ; Chien, Shu}, series = {Biomedizinische Technik / Biomedical Engineering. 43 (1998), H. s1}, journal = {Biomedizinische Technik / Biomedical Engineering. 43 (1998), H. s1}, isbn = {1862-278}, pages = {446 -- 447}, year = {1998}, language = {en} } @article{BehbahaniBehrAroraetal.2006, author = {Behbahani, Mehdi and Behr, M. and Arora, D. and Coronado, O. and Pasquali, M.}, title = {CFD Analysis of MicroMed Debakey Pump and Hemolysis Prediction / Behbahani, M. ; Behr, M. ; Arora, D. ; Coronado, O. ; Pasquali, M.}, series = {Artificial Organs. 30 (2006), H. 11}, journal = {Artificial Organs. 30 (2006), H. 11}, isbn = {1525-1594}, pages = {A45 -- A46}, year = {2006}, language = {en} } @article{NeumaierWeissVeldemanetal.2021, author = {Neumaier, Felix and Weiss, Miriam and Veldeman, Michael and Kotliar, Konstantin and Wiesmann, Martin and Schulze-Steinen, Henna and H{\"o}llig, Anke and Clusmann, Hans and Schubert, Gerrit Alexander and Albanna, Walid}, title = {Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage - preliminary findings from an observational cohort study}, series = {Clinical Neurology and Neurosurgery}, volume = {208}, journal = {Clinical Neurology and Neurosurgery}, number = {Article No.: 106870}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0303-8467}, doi = {10.1016/j.clineuro.2021.106870}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) is associated with early and delayed brain injury due to several underlying and interrelated processes, which include inflammation, oxidative stress, endothelial, and neuronal apoptosis. Treatment with melatonin, a cytoprotective neurohormone with anti-inflammatory, anti-oxidant and anti-apoptotic effects, has been shown to attenuate early brain injury (EBI) and to prevent delayed cerebral vasospasm in experimental aSAH models. Less is known about the role of endogenous melatonin for aSAH outcome and how its production is altered by the pathophysiological cascades initiated during EBI. In the present observational study, we analyzed changes in melatonin levels during the first three weeks after aSAH.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} } @article{FeuchtSchoenbachLanzletal.2013, author = {Feucht, Nikolaus and Sch{\"o}nbach, Etienne Michael and Lanzl, Ines and Kotliar, Konstantin and Lohmann, Chris Patrick and Maier, Mathias}, title = {Changes in the foveal microstructure after intravitreal bevacizumab application in patients with retinal vascular disease}, series = {Clinical Ophthalmology}, volume = {7}, journal = {Clinical Ophthalmology}, publisher = {Dove Medical Press}, address = {Auckland, New Zealand}, issn = {1177-5483}, pages = {173 -- 178}, year = {2013}, language = {en} }