@inproceedings{PohleFroehlichDalitzRichteretal.2020, author = {Pohle-Fr{\"o}hlich, Regina and Dalitz, Christoph and Richter, Charlotte and Hahnen, Tobias and St{\"a}udle, Benjamin and Albracht, Kirsten}, title = {Estimation of muscle fascicle orientation in ultrasonic images}, series = {VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5}, booktitle = {VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5}, pages = {79 -- 86}, year = {2020}, language = {en} } @article{WerkhausenCroninAlbrachtetal.2019, author = {Werkhausen, Amelie and Cronin, Neil J. and Albracht, Kirsten and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R.}, title = {Distinct muscle-tendon interaction during running at different speeds and in different loading conditions}, series = {Journal of Applied Physiology}, volume = {127}, journal = {Journal of Applied Physiology}, number = {1}, issn = {1522-1601}, doi = {10.1152/japplphysiol.00710.2018}, pages = {246 -- 253}, year = {2019}, language = {en} } @article{WaldvogelRitzmannFreyleretal.2021, author = {Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Helm, Michael and Monti, Elena and Albracht, Kirsten and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco}, title = {The Anticipation of Gravity in Human Ballistic Movement}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.614060}, year = {2021}, abstract = {Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation.}, language = {en} } @article{MoratFaudeHanssenetal.2020, author = {Morat, Mareike and Faude, Oliver and Hanssen, Henner and Ludyga, Sebastian and Zacher, Jonas and Eibl, Angi and Albracht, Kirsten and Donath, Lars}, title = {Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph17061853}, pages = {1 -- 14}, year = {2020}, abstract = {Exercise training effectively mitigates aging-induced health and fitness impairments. Traditional training recommendations for the elderly focus separately on relevant physiological fitness domains, such as balance, flexibility, strength and endurance. Thus, a more holistic and functional training framework is needed. The proposed agility training concept integratively tackles spatial orientation, stop and go, balance and strength. The presented protocol aims at introducing a two-armed, one-year randomized controlled trial, evaluating the effects of this concept on neuromuscular, cardiovascular, cognitive and psychosocial health outcomes in healthy older adults. Eighty-five participants were enrolled in this ongoing trial. Seventy-nine participants completed baseline testing and were block-randomized to the agility training group or the inactive control group. All participants undergo pre- and post-testing with interim assessment after six months. The intervention group currently receives supervised, group-based agility training twice a week over one year, with progressively demanding perceptual, cognitive and physical exercises. Knee extension strength, reactive balance, dual task gait speed and the Agility Challenge for the Elderly (ACE) serve as primary endpoints and neuromuscular, cognitive, cardiovascular, and psychosocial meassures serve as surrogate secondary outcomes. Our protocol promotes a comprehensive exercise training concept for older adults, that might facilitate stakeholders in health and exercise to stimulate relevant health outcomes without relying on excessively time-consuming physical activity recommendations.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and Staeudle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity}, series = {npj Microgravity}, volume = {7}, journal = {npj Microgravity}, number = {Article number: 32}, publisher = {Springer Nature}, address = {New York}, issn = {2373-8065}, doi = {10.1038/s41526-021-00155-7}, pages = {7 Seiten}, year = {2021}, abstract = {Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70\% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.}, language = {en} } @misc{BlottnerHastermannMuckeltetal.2019, author = {Blottner, Dieter and Hastermann, Maria and Muckelt, Paul and Albracht, Kirsten and Schoenrock, Britt and Salanova, Michele and Warner, Martin and Gunga, Hans-Christian and Stokes, Maria}, title = {MYOTONES - Inflight muscle health status monitoring during long-duration space missions onboard the International Space Station: a single case study}, series = {IAC Papers Archive}, journal = {IAC Papers Archive}, publisher = {Pergamon}, address = {Oxford}, issn = {00741795}, pages = {2 Seiten}, year = {2019}, abstract = {The MYOTONES experiment is the first to monitor changes in the basic biomechanical properties (tone, elasticity and stiffness) of the resting human myofascial system due to microgravity with a oninvasive, portable device on board the ISS. The MyotonPRO device applies several brief mechanical stimuli to the surface of the skin, and the natural oscillation signals of the tissue beneath are detected and computed by the MyotonPRO. Thus, an objective, quick and easy determination of the state of the underlying tissue is possible. Two preflight, four inflight and four post flight measurements were performed on a male astronaut using the same 10 measurement points (MP) for each session. MPs were located on the plantar fascia, Achilles tendon, M. soleus, M. gastrocnemius, M. multifidus, M. splenius capitis, M. deltoideus anterior, M. rectus femoris, infrapatellar tendon, M. tibialis anterior. Subcutaneous tissues thickness above the MPs was measured using ultrasound imaging. Magnetic resonance images (MRI) of lower limb muscles and functional tests were also performed pre- and postflight. Our first measurements on board the ISS confirmed increased tone and stiffness of the lumbar multifidus muscle, an important trunk stabilizer, dysfunction of which is known to be associated with back pain. Furthermore, reduced tone and stiffness of Achilles tendon and plantar fascia were observed inflight vs. preflight, confirming previous findings from terrestrial analog studies and parabolic flights. Unexpectedly, the deltoid showed negative inflight changes in tone and stiffness, and increased elasticity, suggesting a potential risk of muscle atrophy in longer spaceflight that should be addressed by adequate inflight countermeasure protocols. Most values from limb and back MPS showed deflected patterns (in either directions) from inflight shortly after the re-entry phase on the landing day and one week later. Most parameter values then normalized to baseline after 3 weeks likely due to 1G re-adaptation and possible outcome of the reconditioning protocol. No major changes in subcutaneous tissues thickness above the MPs were found inflight vs preflight, suggesting no bias (i.e., fluid shift, extreme tissue thickening or loss). Pre- and postflight MRI and functional tests showed negligible changes in calf muscle size, power and force, which is likely due to training effects from current inflight exercise protocols. The MYOTONES experiment is currently ongoing to collect data from further crew members. The potential impact of this research is to better understand the effects of microgravity and countermeasures over the time course of an ISS mission cycle. This will enable exercise countermeasures to be tailored}, language = {en} } @article{WerkhausenCroninAlbrachtetal.2019, author = {Werkhausen, Amelie and Cronin, Neil J. and Albracht, Kirsten and Paulsen, G{\o}ran and Larsen, Askild V. and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R.}, title = {Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running}, series = {PeerJ}, journal = {PeerJ}, publisher = {Peer}, address = {London}, issn = {21678359}, doi = {10.7717/peerj.6764}, pages = {18 Seiten}, year = {2019}, abstract = {Background During the stance phase of running, the elasticity of the Achilles tendon enables the utilisation of elastic energy and allows beneficial contractile conditions for the triceps surae muscles. However, the effect of changes in tendon mechanical properties induced by chronic loading is still poorly understood. We tested the hypothesis that a training-induced increase in Achilles tendon stiffness would result in reduced tendon strain during the stance phase of running, which would reduce fascicle strains in the triceps surae muscles, particularly in the mono-articular soleus. Methods Eleven subjects were assigned to a training group performing isometric singleleg plantarflexion contractions three times per week for ten weeks, and another ten subjects formed a control group. Before and after the training period, Achilles tendon stiffness was estimated, and muscle-tendon mechanics were assessed during running at preferred speed using ultrasonography, kinematics and kinetics. Results Achilles tendon stiffness increased by 18\% (P <0:01) in the training group, but the associated reduction in strain seen during isometric contractions was not statistically significant. Tendon elongation during the stance phase of running was similar after training, but tendon recoil was reduced by 30\% (P <0:01), while estimated tendon force remained unchanged. Neither gastrocnemius medialis nor soleus fascicle shortening during stance was affected by training. Discussion These results show that a training-induced increase in Achilles tendon stiffness altered tendon behaviour during running. Despite training-induced changes in tendon mechanical properties and recoil behaviour, the data suggest that fascicle shortening patterns were preserved for the running speed that we examined. The asymmetrical changes in tendon strain patterns supports the notion that simple inseries models do not fully explain the mechanical output of the muscle-tendon unit during a complex task like running.}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2018, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J and Paulsen, G{\o}ran and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R}, title = {Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing}, series = {Frontiers in physiology}, journal = {Frontiers in physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00794}, pages = {11 Seiten}, year = {2018}, abstract = {During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18\%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8\%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21\%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation.}, language = {en} } @article{YangKriechbaumerAlbrachtetal.2014, author = {Yang, Peng-Fei and Kriechbaumer, Andreas and Albracht, Kirsten and Sanno, Maximilian and Ganse, Bergita and Koy, Timmo and Shang, Peng and br{\"u}ggemann, Gert-Peter and M{\"u}ller, Lars Peter and Rittweger, J{\"o}rn}, title = {A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans}, series = {Journal of Orthopaedic Translation}, volume = {2}, journal = {Journal of Orthopaedic Translation}, number = {4}, publisher = {Elsevier}, address = {Singapore}, issn = {2214-0328}, doi = {10.1016/j.jot.2014.07.078}, pages = {238 -- 238}, year = {2014}, language = {en} }