@incollection{KnottSofroniaGerressenetal.2014, author = {Knott, Thomas C. and Sofronia, Raluca E. and Gerressen, Marcus and Law, Yuen and Davidescu, Arjana and Savii, George G. and Gatzweiler, Karl-Heinz and Staat, Manfred and Kuhlen, Torsten W.}, title = {Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy}, series = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, booktitle = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12057-7 (Online)}, doi = {10.1007/978-3-319-12057-7_1}, pages = {1 -- 10}, year = {2014}, abstract = {Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted.}, language = {en} } @article{DachwaldMikuckiTulaczyketal.2014, author = {Dachwald, Bernd and Mikucki, Jill and Tulaczyk, Slawek and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Kowalski, Julia and Xu, Changsheng}, title = {IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems}, series = {Annals of Glaciology}, volume = {55}, journal = {Annals of Glaciology}, number = {65}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1727-5644}, doi = {10.3189/2014AoG65A004}, pages = {14 -- 22}, year = {2014}, abstract = {There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample.}, language = {en} } @incollection{MacdonaldMcGrathAppourchauxetal.2014, author = {Macdonald, Malcolm and McGrath, C. and Appourchaux, T. and Dachwald, Bernd and Finsterle, W. and Gizon, L. and Liewer, P. C. and McInnes, Colin R. and Mengali, G. and Seboldt, Wolfgang and Sekii, T. and Solanki, S. K. and Velli, M. and Wimmer-Schweingruber, R. F. and Spietz, Peter and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a solar polar mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, editor = {Macdonald, Malcolm}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-642-34906-5}, doi = {10.1007/978-3-642-34907-2_17}, pages = {243 -- 257}, year = {2014}, abstract = {A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100-125 m to deliver a 'sufficient value' minimum science payload, and that a 2.5 μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass.}, language = {en} } @article{PhamStaat2014, author = {Pham, Phu Tinh and Staat, Manfred}, title = {FEM-based shakedown analysis of hardening structures}, series = {Asia Pacific journal on computational engineering}, journal = {Asia Pacific journal on computational engineering}, number = {1}, publisher = {SpringerOpen}, address = {Berlin}, issn = {2196-1166 (E-Journal)}, doi = {10.1186/2196-1166-1-4}, pages = {Article No. 4}, year = {2014}, abstract = {This paper develops a new finite element method (FEM)-based upper bound algorithm for limit and shakedown analysis of hardening structures by a direct plasticity method. The hardening model is a simple two-surface model of plasticity with a fixed bounding surface. The initial yield surface can translate inside the bounding surface, and it is bounded by one of the two equivalent conditions: (1) it always stays inside the bounding surface or (2) its centre cannot move outside the back-stress surface. The algorithm gives an effective tool to analyze the problems with a very high number of degree of freedom. Our numerical results are very close to the analytical solutions and numerical solutions in literature.}, language = {en} } @inproceedings{Behbahani2014, author = {Behbahani, Mehdi}, title = {An Experimental Study of Thrombocyte Reactions in Response to Biomaterial Surfaces and Varying Shear Stress}, series = {Proceedings of the International Conference on Biomedical Engineering and Systems Prague, Czech Republic, August 14-15, 2014}, booktitle = {Proceedings of the International Conference on Biomedical Engineering and Systems Prague, Czech Republic, August 14-15, 2014}, pages = {Paper 125}, year = {2014}, language = {en} } @article{YangKriechbaumerAlbrachtetal.2014, author = {Yang, Peng-Fei and Kriechbaumer, Andreas and Albracht, Kirsten and Sanno, Maximilian and Ganse, Bergita and Koy, Timmo and Shang, Peng and br{\"u}ggemann, Gert-Peter and M{\"u}ller, Lars Peter and Rittweger, J{\"o}rn}, title = {A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans}, series = {Journal of Orthopaedic Translation}, volume = {2}, journal = {Journal of Orthopaedic Translation}, number = {4}, publisher = {Elsevier}, address = {Singapore}, issn = {2214-0328}, doi = {10.1016/j.jot.2014.07.078}, pages = {238 -- 238}, year = {2014}, language = {en} } @incollection{McInnesBothmerDachwaldetal.2014, author = {McInnes, Colin R. and Bothmer, Volker and Dachwald, Bernd and Geppert, Ulrich R. M. E. and Heiligers, Jeannette and Hilgers, Alan and Johnson, Les and Macdonald, Malcolm and Reinhard, Ruedeger and Seboldt, Wolfgang and Spietz, Peter}, title = {Gossamer roadmap technology reference study for a Sub-L1 Space Weather Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {227 -- 242}, year = {2014}, abstract = {A technology reference study for a displaced Lagrange point space weather mission is presented. The mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy to deliver a low mass platform and payload which can be accommodated on the DLR/ESA Gossamer-3 technology demonstration mission. A direct escape from Geostationary Transfer Orbit is assumed with the sail deployed after the escape burn. The use of a miniaturized, low mass platform and payload then allows the Gossamer-3 solar sail to potentially double the warning time of space weather events. The mission profile and mass budgets will be presented to achieve these ambitious goals.}, language = {en} } @article{KotliarHanssenEberhardtetal.2013, author = {Kotliar, Konstantin and Hanssen, Henner and Eberhardt, Karla and Vilser, Walthard and Schmaderer, Christoph and Halle, Martin and Heemann, Uwe and Baumann, M.}, title = {Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects}, series = {Microcirculation}, journal = {Microcirculation}, publisher = {Wiley}, address = {Malden}, issn = {1549-8719}, year = {2013}, language = {en} } @article{FeuchtSchoenbachLanzletal.2013, author = {Feucht, Nikolaus and Sch{\"o}nbach, Etienne Michael and Lanzl, Ines and Kotliar, Konstantin and Lohmann, Chris Patrick and Maier, Mathias}, title = {Changes in the foveal microstructure after intravitreal bevacizumab application in patients with retinal vascular disease}, series = {Clinical Ophthalmology}, volume = {7}, journal = {Clinical Ophthalmology}, publisher = {Dove Medical Press}, address = {Auckland, New Zealand}, issn = {1177-5483}, pages = {173 -- 178}, year = {2013}, language = {en} } @article{JiminezGermanBehbahaniMiettinenetal.2013, author = {Jiminez German, Salvador and Behbahani, Mehdi and Miettinen, Susanna and Grijpma, Dirk W. and Haimi, Suvi P.}, title = {Proliferation and differentiation of adipose stem cells towards smooth muscle cells on poly(trimethylene carbonate) membranes}, series = {Macromolecular symposia}, volume = {Vol. 334}, journal = {Macromolecular symposia}, number = {Iss. 1}, publisher = {Wiley}, address = {Weinheim}, issn = {0258-0322}, pages = {133 -- 142}, year = {2013}, language = {en} } @inproceedings{KonstantinidisDachwaldOhndorfetal.2013, author = {Konstantinidis, K. and Dachwald, Bernd and Ohndorf, A. and Dykta, P. and Voigt, K. and F{\"o}rstner, R.}, title = {Enceladus explorer (ENEX): A lander mission to probe subglacial water pockets on Saturn's moon enceladus for life}, series = {64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2)}, booktitle = {64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2)}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Astronautical Congress <64, 2013, Beijing>}, isbn = {978-1-62993-909-4}, pages = {1340 -- 1350}, year = {2013}, language = {en} } @article{AkimbekovDigelTastambeketal.2013, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, K. T. and Zhubanova, A. A.}, title = {Biocompatibility of carbonized rice husk with a rat heart cells line H9c2}, series = {Experimental Biology}, volume = {59}, journal = {Experimental Biology}, number = {3/1}, issn = {1563-0218}, pages = {23 -- 25}, year = {2013}, language = {en} } @inproceedings{FrotscherGossmannTemizArtmannetal.2013, author = {Frotscher, Ralf and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, booktitle = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, publisher = {Verl. d. Weißruss. Staatl. Univ.}, address = {Minsk}, organization = {International Conference Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures <1, 2013, Minsk>}, isbn = {978-985-553-135-8}, pages = {165 -- 167}, year = {2013}, language = {en} } @article{AlbrachtArampatzis2013, author = {Albracht, Kirsten and Arampatzis, Adamantios}, title = {Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans}, series = {European Journal of Applied Physiology}, volume = {113}, journal = {European Journal of Applied Physiology}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1439-6327}, doi = {10.1007/s00421-012-2585-4}, pages = {1605 -- 1615}, year = {2013}, language = {en} } @inproceedings{BraunsteinGoldmannAlbrachtetal.2013, author = {Braunstein, Bjoern and Goldmann, Jan-Peter and Albracht, Kirsten and Sanno, Maximilian and Willwacher, Steffen and Heinrich, Kai and Herrmann, Volker and Br{\"u}ggemann, Gert-Peter}, title = {Joint specific contribution of mechanical power and work during acceleration and top speed in elite sprinters}, series = {31 International Conference on Biomechanics in Sports, Taipei, Taiwan, July 07 - July 22, 2013}, booktitle = {31 International Conference on Biomechanics in Sports, Taipei, Taiwan, July 07 - July 22, 2013}, issn = {1999-4168}, year = {2013}, language = {en} } @article{DigelAkimbekovTuralievaetal.2013, author = {Digel, Ilya and Akimbekov, Nuraly S. and Turalieva, M. and Mansurov, Z. and Temiz Artmann, Ayseg{\"u}l and Eshibaev, A. and Zhubanova, A.}, title = {Usage of Carbonized Plant Wastes for Purification of Aqueous Solutions}, series = {Journal of Industrial Technology and Engineering}, volume = {2}, journal = {Journal of Industrial Technology and Engineering}, number = {07}, pages = {47 -- 54}, year = {2013}, language = {en} } @article{AkimbekovDigelZhubanova2013, author = {Akimbekov, Nuraly S. and Digel, Ilya and Zhubanova, A. A.}, title = {Investigation the Influence of Carbonized Material Based On Rice Husk on Viability and Migration of Fibroblasts in T3B3 Cell Culture}, series = {KazNU Bulletin. Biology series}, volume = {59}, journal = {KazNU Bulletin. Biology series}, number = {3/1}, issn = {1563-0218}, pages = {20 -- 23}, year = {2013}, language = {en} } @article{KraemerDaabMuelleretal.2013, author = {Kr{\"a}mer, Stefan and Daab, Dominique Jonas and M{\"u}ller, Brigitte and Wagner, Tobias and Baader, Fabian and Hessel, Joana and Gdalewitsch, Georg and Plescher, Engelbert and Dachwald, Bernd and Wahle, Michael and Gierse, Andreas and Vetter, Rudolf and Pf{\"u}tzenreuter, Lysan}, title = {Development and flight-testing of a system to isolate vibrations for microgravity experiments on sounding rockets}, series = {21st ESA Symposium on Rocket and Balloon Research}, journal = {21st ESA Symposium on Rocket and Balloon Research}, pages = {1 -- 8}, year = {2013}, language = {en} } @article{BassamDigelHescheleretal.2013, author = {Bassam, Rasha and Digel, Ilya and Hescheler, J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Effects of spermine NONOate and ATP on protein aggregation: light scattering evidences}, series = {BMC Biophysics}, journal = {BMC Biophysics}, publisher = {BioMed Central}, address = {London}, isbn = {2046-1682}, url = {http://nbn-resolving.de/10.1186/2046-1682-6-1}, pages = {1 -- 14}, year = {2013}, language = {en} } @article{AndingTabazaStaatetal.2013, author = {Anding, Ralf and Tabaza, Ruth and Staat, Manfred and Trenz, Eva and Lohmann, Philipp and Klinge, Uwe and Kirschner-Hermanns, Ruth}, title = {Introducing a method of in vitro testing of different anchoring systems used for female incontinence and prolapse surgery}, series = {BioMed research international}, volume = {Vol. 2013}, journal = {BioMed research international}, issn = {1110-7251 (E-Journal); 2314-6141 (E-Journal); 1110-7243 (Print); 2314-6133 (Print)}, pages = {Article ID 401417}, year = {2013}, language = {en} }