@incollection{AzatKerimkulovaMansurovetal.2020, author = {Azat, Seitkhan and Kerimkulova, Almagul R. and Mansurov, Zulkhair A. and Adekenov, Sergazy and Artmann, Gerhard}, title = {The Use of Fusicoccin as Anticancer Compound}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {New York}, isbn = {978-0-429-42864-7}, doi = {10.1201/9780429428647-8}, pages = {149 -- 172}, year = {2020}, abstract = {The problem of creation and use of sorption materials is of current interest for the practice of the modern medicine and agriculture. Practical importance is production of a biostimulant using a carbon sorbent for a significant increase in productivity, which is very relevant for the regions of Kazakhstan. It is known that a plant phytohormone—fusicoccin—in nanogram concentrations transforms cancer cells to the state of apoptosis. In this regard, there is a scientific practical interest in the development of a highly efficient method for producing fusicoccin from extract of germinated wheat seeds. According to the results of computer modeling, cleaning composite components of fusicoccin using microporous carbon adsorbents not suitable as the size of the molecule of fusicoccin more than micropores and the optimum pore size for purification of constituents of fusicoccin was determined by computer simulation.}, language = {en} } @article{ArtmannGrebeHomrighausenetal.1988, author = {Artmann, Gerhard and Grebe, R. and Homrighausen, A. and Wolff, H. and Teitel, P. and Schmid-Sch{\"o}nbein, H.}, title = {Response of normal and diabetic erythrocytes to membrane deformation by chemical and mechanical forces. Artmann, Gerhard Michael; Grebe, R.; Homrighausen, A.; Wolff, H.; Teitel, P.; Schmid-Sch{\"o}nbein, H.}, series = {12. Jahrestagung der Gesellschaft f{\"u}r Mikrozirkulation}, journal = {12. Jahrestagung der Gesellschaft f{\"u}r Mikrozirkulation}, publisher = {Karger [u.a.]}, address = {Basel [u.a.]}, pages = {196 -- 200}, year = {1988}, language = {en} } @article{TranKreissigVuetal.2008, author = {Tran, Thanh Ngoc and Kreißig, R. and Vu, Duc Khoi and Staat, Manfred}, title = {Upper bound limit and shakedown analysis of shells using the exact Ilyushin yield surface}, series = {Computer \& Structures. 86 (2008)}, journal = {Computer \& Structures. 86 (2008)}, isbn = {0045-7949}, pages = {1683 -- 1695}, year = {2008}, language = {en} } @article{JungMuellerStaat2018, author = {Jung, Alexander and M{\"u}ller, Wolfram and Staat, Manfred}, title = {Wind and fairness in ski jumping: A computer modelling analysis}, series = {Journal of Biomechanics}, journal = {Journal of Biomechanics}, number = {75}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2018.05.001}, pages = {147 -- 153}, year = {2018}, abstract = {Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping.}, language = {en} } @article{JungStaatMueller2018, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Corrigendum to "Flight style optimization in ski jumping on normal, large, and ski flying hills" [J. Biomech 47 (2014) 716-722]}, series = {Journals of Biomechanics}, journal = {Journals of Biomechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2018.02.001}, pages = {313}, year = {2018}, language = {en} } @inproceedings{DuongNguyenStaat2012, author = {Duong, Minh Tuan and Nguyen, Nhu Hunyh and Staat, Manfred}, title = {Finite Element Implementation of a 3D Fung-type Model}, series = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, booktitle = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, publisher = {Verlag d. Technischen Universit{\"a}t Graz}, address = {Graz}, isbn = {978-3-85125-223-1}, year = {2012}, language = {en} } @article{FrotscherKochStaat2015, author = {Frotscher, Ralf and Koch, Jan-Peter and Staat, Manfred}, title = {Computational investigation of drug action on human-induced stem cell derived cardiomyocytes}, series = {Journal of biomechanical engineering}, volume = {Vol. 137}, journal = {Journal of biomechanical engineering}, number = {iss. 7}, publisher = {ASME}, address = {New York}, issn = {1528-8951 (E-Journal); 0148-0731 (Print)}, doi = {10.1115/1.4030173}, pages = {071002-1 -- 071002-7}, year = {2015}, language = {en} } @article{Staat1993, author = {Staat, Manfred}, title = {Failure probabilities of the primary circuit pressure boundary of an HTR-Module for process heat generation under accident conditions for different failure modes}, series = {Nuclear Engineering and Design. 144 (1993), H. 1}, journal = {Nuclear Engineering and Design. 144 (1993), H. 1}, isbn = {0029-5493}, pages = {53 -- 67}, year = {1993}, language = {en} } @incollection{TranStaat2015, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertainty multimode failure and shakedown analysis of shells}, series = {Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ...}, booktitle = {Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ...}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12927-3 (print) ; 978-3-319-12928-0 (online)}, doi = {10.1007/978-3-319-12928-0_14}, pages = {279 -- 298}, year = {2015}, abstract = {This paper presents a numerical procedure for reliability analysis of thin plates and shells with respect to plastic collapse or to inadaptation. The procedure involves a deterministic shakedown analysis for each probabilistic iteration, which is based on the upper bound approach and the use of the exact Ilyushin yield surface. Probabilistic shakedown analysis deals with uncertainties originated from the loads, material strength and thickness of the shell. Based on a direct definition of the limit state function, the calculation of the failure probability may be efficiently solved by using the First and Second Order Reliability Methods (FORM and SORM). The problem of reliability of structural systems (series systems) is handled by the application of a special technique which permits to find all the design points corresponding to all the failure modes. Studies show, in this case, that it improves considerably the FORM and SORM results.}, language = {en} } @article{Staat2004, author = {Staat, Manfred}, title = {Plastic collapse analysis of longitudinally flawed pipes and vessels}, series = {Nuclear Engineering and Design. 234 (2004), H. 1-3}, journal = {Nuclear Engineering and Design. 234 (2004), H. 1-3}, isbn = {0029-5493}, pages = {25 -- 43}, year = {2004}, language = {en} }