@incollection{FrotscherStaat2018, author = {Frotscher, Ralf and Staat, Manfred}, title = {Towards Patient-Specific Computational Modeling of hiPS-Derived Cardiomyocyte Function and Drug Action}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_10}, pages = {233 -- 250}, year = {2018}, abstract = {Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) today are widely used for the investigation of normal electromechanical cardiac function, of cardiac medication and of mutations. Computational models are thus established that simulate the behavior of this kind of cells. This section first motivates the modeling of hiPS-CM and then presents and discusses several modeling approaches of microscopic and macroscopic constituents of human-induced pluripotent stem cell-derived and mature human cardiac tissue. The focus is led on the mapping of the computational results one can achieve with these models onto mature human cardiomyocyte models, the latter being the real matter of interest. Model adaptivity is the key feature that is discussed because it opens the way for modeling various biological effects like biological variability, medication, mutation and phenotypical expression. We compare the computational with experimental results with respect to normal cardiac function and with respect to inotropic and chronotropic drug effects. The section closes with a discussion on the status quo of the specificity of computational models and on what challenges have to be solved to reach patient-specificity.}, language = {en} } @inproceedings{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Pectopexy to repair vaginal vault prolapse: a finite element approach}, series = {Proceedings CMBBE 2018}, booktitle = {Proceedings CMBBE 2018}, editor = {Fernandes, P.R. and Tavares, J. M.}, year = {2018}, abstract = {The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient's anatomy and the surgeon's preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes.}, language = {en} } @article{HorbachStaat2018, author = {Horbach, Andreas and Staat, Manfred}, title = {Optical strain measurement for the modeling of surgical meshes and their porosity}, series = {Current Directions in Biomedical Engineering}, volume = {Band 4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0045}, pages = {181 -- 184}, year = {2018}, abstract = {The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes.}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Computational comparison of different textile implants to correct apical prolapse in females}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, doi = {10.1515/cdbme-2018-0159}, pages = {661 -- 664}, year = {2018}, abstract = {Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient's anatomical defect, intended function after reconstruction and most importantly the surgeon's preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared.}, language = {en} } @article{JayaramanMummidisettyLoeschetal.2019, author = {Jayaraman, Chandrasekaran and Mummidisetty, Chaitanya Krishna and Loesch, Alexandra and Kaur, Sandi and Hoppe-Ludwig, Shenan and Staat, Manfred and Jayaraman, Arun}, title = {Postural and metabolic benefits of using a forearm support walker in older adults with impairments}, series = {Archives of Physical Medicine and Rehabilitation}, volume = {Volume 100}, journal = {Archives of Physical Medicine and Rehabilitation}, number = {Issue 4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-9993}, doi = {10.1016/j.apmr.2018.10.001}, pages = {638 -- 647}, year = {2019}, language = {en} } @article{LeschingerBirgelHackletal.2019, author = {Leschinger, Tim and Birgel, Stefan and Hackl, Michael and Staat, Manfred and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {A musculoskeletal shoulder simulation of moment arms and joint reaction forces after medialization of the supraspinatus footprint in rotator cuff repair}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {Early view}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/10255842.2019.1572749}, year = {2019}, language = {en} } @article{JungStaat2019, author = {Jung, Alexander and Staat, Manfred}, title = {Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue}, series = {GAMM - Mitteilungen der Gesellschaft f{\"u}r Angewandte Mathematik und Mechanik}, volume = {42}, journal = {GAMM - Mitteilungen der Gesellschaft f{\"u}r Angewandte Mathematik und Mechanik}, number = {4}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.201900002}, pages = {11 Seiten}, year = {2019}, language = {en} } @article{TranStaat2020, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under lognormally distributed strength by chance constrained programming}, series = {Optimization and Engineering}, volume = {21}, journal = {Optimization and Engineering}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-2924}, doi = {10.1007/s11081-019-09437-2}, pages = {131 -- 157}, year = {2020}, abstract = {We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.}, language = {en} } @article{MeyerGaalenLeschingeretal.2019, author = {Meyer, Carolin and Gaalen, Kerstin van and Leschinger, Tim and Scheyerer, Max J. and Neiss, Wolfram F. and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Kyphoplasty of Osteoporotic Fractured Vertebrae: A Finite Element Analysis about Two Types of Cement}, series = {BioMed Research International}, journal = {BioMed Research International}, doi = {10.1155/2019/9232813}, pages = {Article ID 9232813}, year = {2019}, language = {en} } @book{StaatErni2019, author = {Staat, Manfred and Erni, Daniel}, title = {Symposium Proceedings; 3rd YRA MedTech Symposium 2019: May 24 / 2019 / FH Aachen}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {49 Seiten}, year = {2019}, language = {en} }