@inproceedings{FrotscherGossmannTemizArtmannetal.2013, author = {Frotscher, Ralf and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, booktitle = {1st International Conference "Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures", Minsk, Belarus, Sept. 16-20, 2013}, publisher = {Verl. d. Weißruss. Staatl. Univ.}, address = {Minsk}, organization = {International Conference Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures <1, 2013, Minsk>}, isbn = {978-985-553-135-8}, pages = {165 -- 167}, year = {2013}, language = {en} } @incollection{FrotscherGossmannRaatschenetal.2015, author = {Frotscher, Ralf and Goßmann, Matthias and Raatschen, Hans-J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, booktitle = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-319-02534-6 ; 978-3-319-02535-3}, pages = {187 -- 212}, year = {2015}, abstract = {We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.}, language = {en} } @article{FrotscherMuanghongDursunetal.2016, author = {Frotscher, Ralf and Muanghong, Danita and Dursun, G{\"o}zde and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue}, series = {Journal of Biomechanics}, volume = {49}, journal = {Journal of Biomechanics}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290 (Print)}, doi = {10.1016/j.jbiomech.2016.01.039}, pages = {2428 -- 2435}, year = {2016}, abstract = {We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures.}, language = {en} } @article{ArtmannBurnsCanavesetal.2004, author = {Artmann, Gerhard and Burns, Laura and Canaves, Jaume M. and Temiz Artmann, Ayseg{\"u}l}, title = {Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature}, series = {European Biophysics Journal. 33 (2004), H. 6}, journal = {European Biophysics Journal. 33 (2004), H. 6}, isbn = {1432-1017}, pages = {490 -- 496}, year = {2004}, language = {en} } @article{AminTemizArtmannArtmannetal.2009, author = {Amin, Rashid and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Lazarovici, Philip and Lelkes, Peter I.}, title = {Permeability of an In Vitro Model of Blood Brain Barrier (BBB)}, series = {13th International Conference on Biomedical Engineering / Lim, Chwee Teck [Ed.]}, journal = {13th International Conference on Biomedical Engineering / Lim, Chwee Teck [Ed.]}, isbn = {978-3-540-92841-6}, pages = {81 -- 84}, year = {2009}, language = {en} } @article{DemirciTrzewikLinderetal.2004, author = {Demirci, T. and Trzewik, J. and Linder, Peter and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: Real Time PCR Products and Suppliers by Comparison}, series = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1046 -- 1047}, year = {2004}, language = {en} } @article{UysalCreutzFiratetal.2022, author = {Uysal, Karya and Creutz, Till and Firat, Ipek Seda and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, pages = {2213}, year = {2022}, abstract = {Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3-4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications.}, language = {en} } @article{TemizArtmannKurulgandemirciFıratetal.2021, author = {Temiz Artmann, Ayseg{\"u}l and Kurulgan demirci, Eylem and F{\i}rat, Ipek Seda and Oflaz, Hakan and Artmann, Gerhard}, title = {Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers}, series = {SHOCK}, journal = {SHOCK}, publisher = {Wolters Kluwer}, address = {K{\"o}ln}, issn = {1540-0514}, doi = {10.1097/SHK.0000000000001845}, year = {2021}, language = {en} } @article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} }