@inproceedings{GrundmannBieleDachwaldetal.2016, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft for small solar system body science, planetary defence and applications}, series = {IEEE Aerospace Conference 2016}, booktitle = {IEEE Aerospace Conference 2016}, pages = {1 -- 20}, year = {2016}, abstract = {Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a 'pure' science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA's ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART.}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, H. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown analysis of plate bending analysis under stochastic uncertainty by chance constrained programming}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} } @inproceedings{BhattaraiStaat2016, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Female pelvic floor dysfunction: progress weakening of the support system}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {11 -- 12}, year = {2016}, abstract = {The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders.}, language = {en} } @inproceedings{KahmannHacklWegmannetal.2016, author = {Kahmann, Stephanie and Hackl, Michael and Wegmann, Kilian and M{\"u}ller, Lars-Peter and Staat, Manfred}, title = {Impact of a proximal radial shortening osteotomy on the distribution of forces and the stability of the elbow}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {7 -- 8}, year = {2016}, abstract = {The human arm consists of the humerus (upper arm), the medial ulna and the lateral radius (forearm). The joint between the humerus and the ulna is called humeroulnar joint and the joint between the humerus and the radius is called humeroradial joint. Lateral and medial collateral ligaments stabilize the elbow. Statistically, 2.5 out of 10,000 people suffer from radial head fractures [1]. In these fractures the cartilage is often affected. Caused by the injured cartilage, degenerative diseases like posttraumatic arthrosis may occur. The resulting pain and reduced range of motion have an impact on the patient's quality of life. Until now, there has not been a treatment which allows typical loads in daily life activities and offers good long-term results. A new surgical approach was developed with the motivation to reduce the progress of the posttraumatic arthrosis. Here, the radius is shortened by 3 mm in the proximal part [2]. By this means, the load of the radius is intended to be reduced due to a load shift to the ulna. Since the radius is the most important stabilizer of the elbow it has to be confirmed that the stability is not affected. In the first test (Fig. 1 left), pressure distributions within the humeroulnar and humeroradial joints a native and a shortened radius were measured using resistive pressure sensors (I5076 and I5027, Tekscan, USA). The humerus was loaded axially in a tension testing machine (Z010, Zwick Roell, Germany) in 50 N steps up to 400 N. From the humerus the load is transmitted through both the radius and the ulna into the hand which is fixed on the ground. In the second test (Fig. 1 right), the joint stability was investigated using a digital image correlation system to measure the displacement of the ulna. Here, the humerus is fixed with a desired flexion angle and the unconstrained forearm lies on the ground. A rope connects the load actuator with a hook fixed in the ulna. A guide roller is used so that the rope pulls the ulna horizontally when a tensile load is applied. This creates a moment about the elbow joint with a maximum value of 7.5 Nm. Measurements were performed with varying flexion angles (0°, 30°, 60°, 90°, 120°). For both tests and each measurement, seven specimens were used. Student's t-test was employed to determine whether the mean values of the measurements in native specimen and operated specimens differ significantly.}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {FEM Shakedown of uncertain structures by chance constrained programming}, series = {PAMM Proceedings in Applied Mathematics and Mechanics}, volume = {16}, booktitle = {PAMM Proceedings in Applied Mathematics and Mechanics}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.201610346}, pages = {715 -- 716}, year = {2016}, language = {en} } @inproceedings{StaatDuong2016, author = {Staat, Manfred and Duong, Minh Tuan}, title = {Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies}, series = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, booktitle = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, pages = {440 -- 445}, year = {2016}, abstract = {The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects.}, language = {en} } @inproceedings{MarinovaKerroumiLintermannetal.2016, author = {Marinova, V. and Kerroumi, I. and Lintermann, A. and G{\"o}bbert, J.H. and Moulinec, C. and Rible, S. and Fournier, Y. and Behbahani, Mehdi}, title = {Numerical Analysis of the FDA Centrifugal Blood Pump}, series = {NIC Symposium 2016}, booktitle = {NIC Symposium 2016}, isbn = {978-3-95806-109-5}, pages = {355 -- 364}, year = {2016}, language = {de} } @inproceedings{JungStaatMueller2016, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Effect of wind on flight style optimisation in ski jumping}, series = {15th International Symposium on Computer Simulation in Biomechanics ; July 9th-11th 2015, Edinburgh, UK}, booktitle = {15th International Symposium on Computer Simulation in Biomechanics ; July 9th-11th 2015, Edinburgh, UK}, publisher = {The University of Edinburgh ; Loughborough University}, address = {Edinburgh}, pages = {53 -- 54}, year = {2016}, language = {en} } @inproceedings{DroszezSannoGoldmannetal.2016, author = {Droszez, Anna and Sanno, Maximilian and Goldmann, Jan-Peter and Albracht, Kirsten and Br{\"u}ggemann, Gert-Peter and Braunstein, Bjoern}, title = {Differences between take-off behavior during vertical jumps and two artistic elements}, series = {34th International Conference of Biomechanics in Sport, Tsukuba, Japan, July 18-22, 2016}, booktitle = {34th International Conference of Biomechanics in Sport, Tsukuba, Japan, July 18-22, 2016}, issn = {1999-4168}, pages = {577 -- 580}, year = {2016}, language = {en} } @inproceedings{KolditzAlbinAlbrachtetal.2016, author = {Kolditz, Melanie and Albin, Thivaharan and Albracht, Kirsten and Br{\"u}ggemann, Gert-Peter and Abel, Dirk}, title = {Isokinematic leg extension training with an industrial robot}, series = {6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore}, booktitle = {6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore}, doi = {10.1109/BIOROB.2016.7523750}, pages = {950 -- 955}, year = {2016}, language = {de} } @inproceedings{GrundmannLangeDachwaldetal.2015, author = {Grundmann, Jan Thimo and Lange, Caroline and Dachwald, Bernd and Grimm, Christian and Koch, Aaron and Ulamec, Stephan}, title = {Small Spacecraft in Planetary Defence Related Applications-Capabilities, Constraints, Challenges}, series = {IEEE Aerospace Conference}, booktitle = {IEEE Aerospace Conference}, pages = {1 -- 18}, year = {2015}, abstract = {In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA's ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos.}, language = {en} } @inproceedings{FrotscherDuongStaat2015, author = {Frotscher, Ralf and Duong, Minh Tuan and Staat, Manfred}, title = {Simulating beating cardiomyocytes with electromechanical coupling}, series = {II. International Conference on Biomedical Technology : 28-30 October 2015 Hannover, Germany / T. Lenarz, P. Wriggers (Eds.)}, booktitle = {II. International Conference on Biomedical Technology : 28-30 October 2015 Hannover, Germany / T. Lenarz, P. Wriggers (Eds.)}, organization = {International Conference on Biomedical Technology <2, 2015, Hannover>}, pages = {1 -- 2}, year = {2015}, language = {en} } @inproceedings{DuongNguyenStaat2015, author = {Duong, Minh Tuan and Nguyen, N. H. and Staat, Manfred}, title = {Modeling and simulation of a growing mass by the Smoothed Finite Element Method (SFEM)}, series = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen, Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, booktitle = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen, Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, publisher = {RWTH Aachen University}, address = {Aachen}, organization = {ECCOMAS Young Investigators Conference <3, 2015, Aachen>}, pages = {1 -- 4}, year = {2015}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and Orbital Dynamics Modeling for an Uncontrolled Solar-Sail Experiment in Low-Earth Orbit}, series = {25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany}, booktitle = {25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany}, pages = {15 S.}, year = {2015}, language = {en} } @inproceedings{SeefeldtBauerDachwaldetal.2015, author = {Seefeldt, Patric and Bauer, Waldemar and Dachwald, Bernd and Grundmann, Jan Thimo and Straubel, Marco and Sznajder, Maciej and T{\´o}th, Norbert and Zander, Martin E.}, title = {Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {24}, year = {2015}, language = {en} } @inproceedings{BehbahaniRibleMoulinecetal.2015, author = {Behbahani, Mehdi and Rible, Sebastian and Moulinec, Charles and Fournier, Yvan and Nicolai, Mike and Crosetto, Paolo}, title = {Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing}, series = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, volume = {9}, booktitle = {World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering}, number = {5}, year = {2015}, language = {en} } @inproceedings{PeloniCeriottiDachwald2015, author = {Peloni, Alessandro and Ceriotti, Matteo and Dachwald, Bernd}, title = {Solar-Sailing Trajectory Design for Close-up NEA Observations Mission}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {21 S.}, year = {2015}, language = {de} } @inproceedings{PeloniCeriottiDachwald2015, author = {Peloni, A. and Ceriotti, M. and Dachwald, Bernd}, title = {Preliminary trajectory design of a multiple NEO rendezvous mission through solar sailing}, series = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, booktitle = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-63439-986-9}, pages = {5352 -- 5366}, year = {2015}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2015, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Cordero, Frederico and Dachwald, Bernd and Koncz, Alexander and Krause, Christian and Mikschl, Tobias and Montenegro, Sergio and Quantius, Dominik and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seefeldt, Patric and T{\´o}th, Norbert and Wejmo, Elisabet}, title = {From Sail to Soil - Getting Sailcraft Out of the Harbour on a Visit to One of Earth's Nearest Neighbours}, series = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {20 S.}, year = {2015}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit}, series = {25th International Symposium on Space Flight Dynamics ISSFD}, booktitle = {25th International Symposium on Space Flight Dynamics ISSFD}, pages = {1 -- 15}, year = {2015}, abstract = {Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail}, language = {en} }