@inproceedings{PhamNguyenStaat2012, author = {Pham, Phu Tinh and Nguyen, Thanh Ngoc and Staat, Manfred}, title = {FEM based shakedown analysis of hardening structures}, series = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, booktitle = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, pages = {870 -- 882}, year = {2012}, language = {en} } @article{TranStaat2020, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under lognormally distributed strength by chance constrained programming}, series = {Optimization and Engineering}, volume = {21}, journal = {Optimization and Engineering}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-2924}, doi = {10.1007/s11081-019-09437-2}, pages = {131 -- 157}, year = {2020}, abstract = {We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.}, language = {en} } @article{Staat2012, author = {Staat, Manfred}, title = {Limit and shakedown analysis under uncertainty}, series = {Tap chi Khoa hoc \& ung dung - Dai hoc Ton Duc Thang}, volume = {19}, journal = {Tap chi Khoa hoc \& ung dung - Dai hoc Ton Duc Thang}, pages = {45 -- 47}, year = {2012}, language = {en} } @article{LeversStaatLaack2016, author = {Levers, A. and Staat, Manfred and Laack, Walter van}, title = {Analysis of the long-term effect of the MBST® nuclear magnetic resonance therapy on gonarthrosis}, series = {Orthopedic Practice}, volume = {47}, journal = {Orthopedic Practice}, number = {11}, pages = {521 -- 528}, year = {2016}, language = {en} } @inproceedings{BhattaraiStaat2016, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Female pelvic floor dysfunction: progress weakening of the support system}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {11 -- 12}, year = {2016}, abstract = {The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders.}, language = {en} } @article{UllrichGrottkeRossaintetal.2010, author = {Ullrich, Sebastian and Grottke, Oliver and Rossaint, Rolf and Staat, Manfred and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Virtual Needle Simulation with Haptics for Regional Anaesthesia}, pages = {1 -- 3}, year = {2010}, language = {en} } @inproceedings{KahmannHacklWegmannetal.2016, author = {Kahmann, Stephanie and Hackl, Michael and Wegmann, Kilian and M{\"u}ller, Lars-Peter and Staat, Manfred}, title = {Impact of a proximal radial shortening osteotomy on the distribution of forces and the stability of the elbow}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {7 -- 8}, year = {2016}, abstract = {The human arm consists of the humerus (upper arm), the medial ulna and the lateral radius (forearm). The joint between the humerus and the ulna is called humeroulnar joint and the joint between the humerus and the radius is called humeroradial joint. Lateral and medial collateral ligaments stabilize the elbow. Statistically, 2.5 out of 10,000 people suffer from radial head fractures [1]. In these fractures the cartilage is often affected. Caused by the injured cartilage, degenerative diseases like posttraumatic arthrosis may occur. The resulting pain and reduced range of motion have an impact on the patient's quality of life. Until now, there has not been a treatment which allows typical loads in daily life activities and offers good long-term results. A new surgical approach was developed with the motivation to reduce the progress of the posttraumatic arthrosis. Here, the radius is shortened by 3 mm in the proximal part [2]. By this means, the load of the radius is intended to be reduced due to a load shift to the ulna. Since the radius is the most important stabilizer of the elbow it has to be confirmed that the stability is not affected. In the first test (Fig. 1 left), pressure distributions within the humeroulnar and humeroradial joints a native and a shortened radius were measured using resistive pressure sensors (I5076 and I5027, Tekscan, USA). The humerus was loaded axially in a tension testing machine (Z010, Zwick Roell, Germany) in 50 N steps up to 400 N. From the humerus the load is transmitted through both the radius and the ulna into the hand which is fixed on the ground. In the second test (Fig. 1 right), the joint stability was investigated using a digital image correlation system to measure the displacement of the ulna. Here, the humerus is fixed with a desired flexion angle and the unconstrained forearm lies on the ground. A rope connects the load actuator with a hook fixed in the ulna. A guide roller is used so that the rope pulls the ulna horizontally when a tensile load is applied. This creates a moment about the elbow joint with a maximum value of 7.5 Nm. Measurements were performed with varying flexion angles (0°, 30°, 60°, 90°, 120°). For both tests and each measurement, seven specimens were used. Student's t-test was employed to determine whether the mean values of the measurements in native specimen and operated specimens differ significantly.}, language = {en} } @article{CiobanuStaatRahimi2008, author = {Ciobanu, Octavian and Staat, Manfred and Rahimi, Alireza}, title = {The use of open source software in biomechanical finite element analysis}, series = {Buletinul Institutului Politehnic din Ia{\c{s}}i / Universitatea Tehnică Gh. Asachi, Ia{\c{s}}i Secţia 5, Construcţii de ma{\c{s}}ini = Machine construction = Bulletin of the Polytechnic Institute of Jassy = Izvestija Jasskogo Politechničeskogo Instituta}, volume = {54}, journal = {Buletinul Institutului Politehnic din Ia{\c{s}}i / Universitatea Tehnică Gh. Asachi, Ia{\c{s}}i Secţia 5, Construcţii de ma{\c{s}}ini = Machine construction = Bulletin of the Polytechnic Institute of Jassy = Izvestija Jasskogo Politechničeskogo Instituta}, number = {7/8}, issn = {1011-2855}, pages = {213 -- 220}, year = {2008}, language = {en} } @book{StaatHeitzerYanetal.2000, author = {Staat, Manfred and Heitzer, M. and Yan, Ai-Min and Khoi, Vu Duc and Nguyen, Dang Hung and Valdoire, F. and Lahousse, A.}, title = {Limit Analysis of Defects}, publisher = {Forschungszentrum J{\"u}lich}, address = {J{\"u}lich}, issn = {0944-2952}, pages = {89 S.}, year = {2000}, language = {en} } @article{Staat1996, author = {Staat, Manfred}, title = {Probabilistic assessment of the fracture mechanics behaviour of an HTR-module primary circuit pressure boundary}, series = {Nuclear Engineering and Design. 160 (1996), H. 1-2}, journal = {Nuclear Engineering and Design. 160 (1996), H. 1-2}, isbn = {0029-5493}, pages = {221 -- 236}, year = {1996}, language = {en} } @article{StaatHeitzer2000, author = {Staat, Manfred and Heitzer, M.}, title = {Reliability Analysis of Elasto-Plastic Structures under Variable Loads}, series = {Inelastic analysis of structures under variable loads : theory and engineering applications / Maier, G.; Weichert, D. [ed]}, journal = {Inelastic analysis of structures under variable loads : theory and engineering applications / Maier, G.; Weichert, D. [ed]}, publisher = {Kluwer Academic Publ.}, address = {Dordrecht}, isbn = {0-7923-6645-X}, pages = {269 -- 288}, year = {2000}, language = {en} } @article{Staat1995, author = {Staat, Manfred}, title = {Reliability of an HTR-module primary circuit pressure boundary Influences, sensitivity, and comparison with a PWR}, series = {Nuclear Engineering and Design. 158 (1995), H. 2-3}, journal = {Nuclear Engineering and Design. 158 (1995), H. 2-3}, isbn = {0029-5493}, pages = {333 -- 340}, year = {1995}, language = {en} } @inproceedings{FrotscherRaatschenStaat2012, author = {Frotscher, Ralf and Raatschen, Hans-J{\"u}rgen and Staat, Manfred}, title = {Application of an edge-based smoothed finite element method on geometrically non-linear plates of non-linear material}, series = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, booktitle = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @article{PhamStaat2013, author = {Pham, Phu Tinh and Staat, Manfred}, title = {An Upper Bound Algorithm for Limit and Shakedown Analysis of Bounded Linearly Kinematic Hardening Structures}, series = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, journal = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-5424-9}, pages = {71 -- 87}, year = {2013}, language = {en} } @article{StaatVu2012, author = {Staat, Manfred and Vu, Duc Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels Part II: Circumferential defects}, series = {Engineering Fracture Mechanics ; 97(2013), H. 1}, volume = {97}, journal = {Engineering Fracture Mechanics ; 97(2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-7944}, doi = {10.1016/j.engfracmech.2012.05.017}, pages = {314 -- 333}, year = {2012}, abstract = {Upper and lower bound theorems of limit analyses have been presented in part I of the paper. Part II starts with the finite element discretization of these theorems and demonstrates how both can be combined in a primal-dual optimization problem. This recently proposed numerical method is used to guide the development of a new class of closed-form limit loads for circumferential defects, which show that only large defects contribute to plastic collapse with a rapid loss of strength with increasing crack sizes. The formulae are compared with primal-dual FEM limit analyses and with burst tests. Even closer predictions are obtained with iterative limit load solutions for the von Mises yield function and for the Tresca yield function. Pressure loading of the faces of interior cracks in thick pipes reduces the collapse load of circumferential defects more than for axial flaws. Axial defects have been treated in part I of the paper.}, language = {en} } @incollection{GohTopcuMadabhushietal.2024, author = {Goh, Kheng Lim and Top{\c{c}}u, Murat and Madabhushi, Gopal S. P. and Staat, Manfred}, title = {Collagen fibril reinforcement in connective tissue extracellular matrices}, series = {Handbook of the extracellular matrix}, booktitle = {Handbook of the extracellular matrix}, editor = {Maia, Fatima Raquel Azevedo and Miguel Oliveira, J. and Reis, Rui L.}, publisher = {Springer Nature}, address = {Cham}, isbn = {978-3-031-56362-1 (Print)}, doi = {10.1007/978-3-031-56363-8_6}, pages = {89 -- 108}, year = {2024}, abstract = {The connective tissues such as tendons contain an extracellular matrix (ECM) comprising collagen fibrils scattered within the ground substance. These fibrils are instrumental in lending mechanical stability to tissues. Unfortunately, our understanding of how collagen fibrils reinforce the ECM remains limited, with no direct experimental evidence substantiating current theories. Earlier theoretical studies on collagen fibril reinforcement in the ECM have relied predominantly on the assumption of uniform cylindrical fibers, which is inadequate for modelling collagen fibrils, which possessed tapered ends. Recently, Top{\c{c}}u and colleagues published a paper in the International Journal of Solids and Structures, presenting a generalized shear-lag theory for the transfer of elastic stress between the matrix and fibers with tapered ends. This paper is a positive step towards comprehending the mechanics of the ECM and makes a valuable contribution to formulating a complete theory of collagen fibril reinforcement in the ECM.}, language = {en} } @article{SchierenKleinschmidtSchmutzetal.2019, author = {Schieren, Mark and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Gatzweiler, Karl-Heinz and Staat, Manfred and Wappler, Frank and Defosse, Jerome}, title = {Comparison of forces acting on maxillary incisors during tracheal intubation with different laryngoscopy techniques: a blinded manikin study}, series = {Anaesthesia}, volume = {74}, journal = {Anaesthesia}, number = {12}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1365-2044}, doi = {10.1111/anae.14815}, year = {2019}, language = {en} } @inproceedings{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {Limit and shakedown analysis of structures under random strength}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {510 -- 518}, year = {2022}, abstract = {Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Computational comparison of different textile implants to correct apical prolapse in females}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, doi = {10.1515/cdbme-2018-0159}, pages = {661 -- 664}, year = {2018}, abstract = {Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient's anatomical defect, intended function after reconstruction and most importantly the surgeon's preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared.}, language = {en} } @misc{TopcuMadabhushiStaat2022, author = {Topcu, Murat and Madabhushi, Gopal Santana Phani and Staat, Manfred}, title = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster}, doi = {10.6084/m9.figshare.19333295.v2}, year = {2022}, abstract = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius.}, language = {en} }