@inproceedings{PhamStaat2015, author = {Pham, Phu Tinh and Staat, Manfred}, title = {A simplification for shakedown analysis of hardening structures}, series = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, booktitle = {Conference proceedings of the YIC GACM 2015 : 3rd ECCOMAS Young Investigators Conference and 6th GACM Colloquium on Computational Mechanics , Aachen , Germany, 20.07.2015 - 23.07.2015 / ed.: Stefanie Elgeti ; Jaan-Willem Simon}, publisher = {RWTH Aachen University}, address = {Aachen}, organization = {ECCOMAS Young Investigators Conference <3, 2015, Aachen>}, pages = {1 -- 4}, year = {2015}, language = {en} } @article{VuStaat2004, author = {Vu, Duc-Khoi and Staat, Manfred}, title = {An algorithm for shakedown analysis of structure with temperature dependent yield stress}, year = {2004}, abstract = {This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools.}, subject = {Einspielen }, language = {en} } @misc{HacklWegmannKahmannetal.2017, author = {Hackl, Michael and Wegmann, Kilian and Kahmann, Stephanie Lucina and Heinze, Nicolai and Staat, Manfred and Neiss, Wolfram F. and Scaal, Martin and M{\"u}ller, Lars P.}, title = {Reply to the letter to the editor: shortening osteotomy of the proximal radius}, series = {Knee Surgery, Sports Traumatology, Arthroscopy}, volume = {25}, journal = {Knee Surgery, Sports Traumatology, Arthroscopy}, number = {10}, doi = {10.1007/s00167-017-4666-8}, pages = {3328 -- 3329}, year = {2017}, language = {en} } @article{StaatBallmann1988, author = {Staat, Manfred and Ballmann, J.}, title = {Computation of impacts on elastic solids by methods of bicharacteristics}, series = {Computational Mechanics '88 : theory and applications ; proceedings of the International Conference on Computational Engineering Science April 10-14, 1988, Atlanta, GA, USA ; vol. 2}, journal = {Computational Mechanics '88 : theory and applications ; proceedings of the International Conference on Computational Engineering Science April 10-14, 1988, Atlanta, GA, USA ; vol. 2}, pages = {1719 -- 1722}, year = {1988}, abstract = {Shock waves, explosions, impacts or cavitation bubble collapses may generate stress waves in solids causing cracks or unexpected dammage due to focussing, physical nonlinearity or interaction with existing cracks. There is a growing interest in wave propagation, which poses many novel problems to experimentalists and theorists.}, subject = {Bicharakteristikenverfahren}, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Basis Reduction for the Shakedown Problem for Bounded Kinematic Hardening Material}, year = {2000}, abstract = {Limit and shakedown analysis are effective methods for assessing the load carrying capacity of a given structure. The elasto-plastic behavior of the structure subjected to loads varying in a given load domain is characterized by the shakedown load factor, defined as the maximum factor which satisfies the sufficient conditions stated in the corresponding static shakedown theorem. The finite element dicretization of the problem may lead to very large convex optimization. For the effective solution a basis reduction method has been developed that makes use of the special problem structure for perfectly plastic material. The paper proposes a modified basis reduction method for direct application to the two-surface plasticity model of bounded kinematic hardening material. The considered numerical examples show an enlargement of the load carrying capacity due to bounded hardening.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{StaatBallmann1989, author = {Staat, Manfred and Ballmann, J.}, title = {Fundamental aspects of numerical methods for the propagation of multi-dimensional nonlinear waves in solids}, series = {Nonlinear hyperbolic equations : theory, computations methods, and applications ; proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen}, booktitle = {Nonlinear hyperbolic equations : theory, computations methods, and applications ; proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen}, pages = {574 -- 588}, year = {1989}, abstract = {The nonlinear scalar constitutive equations of gases lead to a change in sound speed from point to point as would be found in linear inhomogeneous (and time dependent) media. The nonlinear tensor constitutive equations of solids introduce the additional local effect of solution dependent anisotropy. The speed of a wave passing through a point changes with propagation direction and its rays are inclined to the front. It is an open question whether the widely used operator splitting techniques achieve a dimensional splitting with physically reasonable results for these multi-dimensional problems. May be this is the main reason why the theoretical and numerical investigations of multi-dimensional wave propagation in nonlinear solids are so far behind gas dynamics. We hope to promote the subject a little by a discussion of some fundamental aspects of the solution of the equations of nonlinear elastodynamics. We use methods of characteristics because they only integrate mathematically exact equations which have a direct physical interpretation.}, subject = {Nichtlineare Welle}, language = {en} } @inproceedings{TranMatthiesStavroulakisetal.2018, author = {Tran, Ngoc Trinh and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {Direct plastic structural design by chance constrained programming}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {12 Seiten}, year = {2018}, abstract = {We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used.}, language = {en} } @article{StaatHeitzerLangetal.2005, author = {Staat, Manfred and Heitzer, M. and Lang, H. and Wirtz, K.}, title = {Direct Finite Element Route for Design-by-Analysis of Pressure Components}, series = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 1}, journal = {International Journal of Pressure Vessels and Piping. 82 (2005), H. 1}, isbn = {0308-0161}, pages = {61 -- 67}, year = {2005}, language = {en} } @inproceedings{Staat2012, author = {Staat, Manfred}, title = {Limit and shakedown analysis under uncertainty}, series = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, booktitle = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, pages = {837 -- 861}, year = {2012}, language = {de} } @inproceedings{DuongNguyenStaat2012, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Numerical stability enhancement of modeling hyperelastic materials}, series = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, booktitle = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @article{StaatBallmann1985, author = {Staat, Manfred and Ballmann, J.}, title = {Anisotrope Ausbreitung und Fokussierung von Beschleunigungswellen in vorgespannten nichtlinearelastischen Scheiben}, series = {Wellenfokussierung, Kolloquium des SFB 27, RWTH Aachen}, journal = {Wellenfokussierung, Kolloquium des SFB 27, RWTH Aachen}, address = {Aachen}, pages = {140 -- 158}, year = {1985}, language = {de} } @article{KohlerKirschnerHermannsStaatetal.2018, author = {Kohler, Annette and Kirschner-Hermanns, Ruth and Staat, Manfred and Brehmer, Bernhard}, title = {Pathogenese, funktionelle und anatomische Aspekte der weiblichen Belastungsinkontinenz}, series = {Aktuelle Urologie}, volume = {49}, journal = {Aktuelle Urologie}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {1438-8820}, doi = {10.1055/s-0043-120616}, pages = {47 -- 51}, year = {2018}, abstract = {Der vorliegende Artikel fokussiert sich auf die weibliche Belastungsinkontinenz als Insuffizienz der Speicherfunktion der Blase, auch wenn im klinischen Alltag die Harninkontinenz der Frau h{\"a}ufig verschiedene Ursachen hat und insbesondere eine Belastungsinkontinenz im Alter und bei neurologischer Komorbidit{\"a}t nur selten isoliert vorkommt. Das kleine Becken der Frau ist sowohl als Funktions- als auch als strukturelle Einheit zu betrachten. Dabei unterliegen bei der Frau Blase, Harnr{\"o}hre, Geb{\"a}rmutter und Enddarm sowie die muskul{\"a}ren und ligament{\"o}sen Strukturen des kleinen Beckens durch Fertilit{\"a}tsphase, m{\"o}gliche Schwangerschaften, Geburten und Menopausen-Phase, {\"u}ber das „normale Altern" hinaus, gravierenden Ver{\"a}nderungen. This article focuses on female stress incontinence in the form of pelvic floor dysfunction and urethral sphincter deficiency, although isolated stress incontinence accounts for less than half of all incontinence cases. Especially in women of old age and those with neurological comorbidities, the causes of incontinence are mostly multifactorial. Also it has to be considered that the female bladder, urethra, uterus and rectum as well as the muscular and ligamentous structures of the female pelvis minor are affected by phases of fertility, possible pregnancies, births and menopause in addition to the normal ageing process.}, language = {de} } @article{HacklAndermahrStaatetal.2017, author = {Hackl, M. and Andermahr, J. and Staat, Manfred and Bremer, I. and Borggrefe, J. and Prescher, A. and M{\"u}ller, L. P. and Wegmann, K.}, title = {Suture button reconstruction of the central band of the interosseous membrane in Essex-Lopresti lesions: a comparative biomechanical investigation}, series = {The Journal of Hand Surgery (European Volume)}, volume = {42}, journal = {The Journal of Hand Surgery (European Volume)}, number = {4}, publisher = {Sage}, address = {London}, issn = {2043-6289 (Online)}, doi = {10.1177/1753193416665943}, pages = {370 -- 376}, year = {2017}, language = {en} } @article{Staat2001, author = {Staat, Manfred}, title = {LISA - a European project for FEM-based limit and shakedown analysis}, year = {2001}, abstract = {The load-carrying capacity or the safety against plastic limit states are the central questions in the design of structures and passive components in the apparatus engineering. A precise answer is most simply given by limit and shakedown analysis. These methods can be based on static and kinematic theorems for lower and upper bound analysis. Both may be formulated as optimization problems for finite element discretizations of structures. The problems of large-scale analysis and the extension towards realistic material modelling will be solved in a European research project. Limit and shakedown analyses are briefly demonstrated with illustrative examples.}, subject = {Einspielen }, language = {en} } @article{TopcuMadabhushiStaat2022, author = {Top{\c{c}}u, Murat and Madabhushi, Gopal S.P. and Staat, Manfred}, title = {A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius}, series = {International Journal of Solids and Structures}, volume = {239-240}, journal = {International Journal of Solids and Structures}, number = {Art. No. 111464}, publisher = {Elsevier}, address = {New York, NY}, issn = {0020-7683}, doi = {10.1016/j.ijsolstr.2022.111464}, year = {2022}, abstract = {A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.}, language = {en} } @article{AbelKahmannMellonetal.2020, author = {Abel, Alexander and Kahmann, Stephanie Lucina and Mellon, Stephen and Staat, Manfred and Jung, Alexander}, title = {An open-source tool for the validation of finite element models using three-dimensional full-field measurements}, series = {Medical Engineering \& Physics}, volume = {77}, journal = {Medical Engineering \& Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, doi = {10.1016/j.medengphy.2019.10.015}, pages = {125 -- 129}, year = {2020}, abstract = {Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.}, language = {en} } @inproceedings{JungFrotscherStaat2018, author = {Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample.}, language = {en} } @inproceedings{KahmannUschokWegmannetal.2018, author = {Kahmann, Stephanie Lucina and Uschok, Stephan and Wegmann, Kilian and M{\"u}ller, Lars-P. and Staat, Manfred}, title = {Biomechanical multibody model with refined kinematics of the elbow}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent.}, language = {en} } @article{AndingTabazaStaatetal.2013, author = {Anding, Ralf and Tabaza, Ruth and Staat, Manfred and Trenz, Eva and Lohmann, Philipp and Klinge, Uwe and Kirschner-Hermanns, Ruth}, title = {Introducing a method of in vitro testing of different anchoring systems used for female incontinence and prolapse surgery}, series = {BioMed research international}, volume = {Vol. 2013}, journal = {BioMed research international}, issn = {1110-7251 (E-Journal); 2314-6141 (E-Journal); 1110-7243 (Print); 2314-6133 (Print)}, pages = {Article ID 401417}, year = {2013}, language = {en} } @misc{StaatBarry2006, author = {Staat, Manfred and Barry, Steve}, title = {Continuum Mechanics with an Introduction to the Finite Element Method / Steve Barry; Manfred Staat. With extensions by Manfred Staat.}, year = {2006}, abstract = {Contents: 1 Introduction 2 One Dimensional Continuum Mechanics 3 Tensors 4 Three Dimensional Stress and Strain 5 Conservation Laws 6 Contiunuum Modelling 7 Plain Problems 8 Questions 9 Reference Information}, subject = {Technische Mechanik}, language = {en} }