@inproceedings{EichenbaumNikolovskiMuelhensetal.2023, author = {Eichenbaum, Julian and Nikolovski, Gjorgji and M{\"u}lhens, Leon and Reke, Michael and Ferrein, Alexander and Scholl, Ingrid}, title = {Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations}, series = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, booktitle = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, publisher = {IEEE}, isbn = {979-8-3503-2069-5 (Online)}, doi = {10.1109/CASE56687.2023.10260526}, pages = {8 Seiten}, year = {2023}, abstract = {Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine.}, language = {en} } @inproceedings{DyllaFerreinLakemeyer2003, author = {Dylla, Frank and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {AllemaniACs 2003 team description}, series = {RoboCup 2003 : Robot Soccer World Cup VII}, booktitle = {RoboCup 2003 : Robot Soccer World Cup VII}, pages = {1 -- 3}, year = {2003}, language = {en} } @inproceedings{DonnerRabelScholletal.2019, author = {Donner, Ralf and Rabel, Matthias and Scholl, Ingrid and Ferrein, Alexander and Donner, Marc and Geier, Andreas and John, Andr{\´e} and K{\"o}hler, Christian and Varga, Sebastian}, title = {Die Extraktion bergbaulich relevanter Merkmale aus 3D-Punktwolken eines untertagetauglichen mobilen Multisensorsystems}, series = {Tagungsband Geomonitoring}, booktitle = {Tagungsband Geomonitoring}, doi = {10.15488/4515}, pages = {91 -- 110}, year = {2019}, language = {de} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @article{ClaerFerreinSchiffer2019, author = {Claer, Mario and Ferrein, Alexander and Schiffer, Stefan}, title = {Calibration of a Rotating or Revolving Platform with a LiDAR Sensor}, series = {Applied Sciences}, volume = {Volume 9}, journal = {Applied Sciences}, number = {issue 11, 2238}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app9112238}, pages = {18 Seiten}, year = {2019}, language = {en} } @inproceedings{ChajanSchulteTiggesRekeetal.2021, author = {Chajan, Eduard and Schulte-Tigges, Joschua and Reke, Michael and Ferrein, Alexander and Matheis, Dominik and Walter, Thomas}, title = {GPU based model-predictive path control for self-driving vehicles}, series = {IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {978-1-7281-5394-0}, doi = {10.1109/IV48863.2021.9575619}, pages = {1243 -- 1248}, year = {2021}, abstract = {One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments.}, language = {en} } @article{BooysenRiegerFerrein2011, author = {Booysen, Tracy and Rieger, Michael and Ferrein, Alexander}, title = {Towards inexpensive robots for science \& technology teaching and education in Africa}, publisher = {IEEE}, address = {New York}, isbn = {978-1-61284-992-8}, pages = {1 -- 6}, year = {2011}, language = {en} } @article{BeckBuchleitnerFerreinetal.2014, author = {Beck, Daniel and Buchleitner, Martin and Ferrein, Alexander and Niem{\"u}ller, Tim and Steinbauer, Gerald}, title = {Mostly Harmless \& AllemaniACs - mixed innovations}, pages = {1 -- 8}, year = {2014}, language = {en} } @inproceedings{ArndtConzenElsenetal.2023, author = {Arndt, Tobias and Conzen, Max and Elsen, Ingo and Ferrein, Alexander and Galla, Oskar and K{\"o}se, Hakan and Schiffer, Stefan and Tschesche, Matteo}, title = {Anomaly detection in the metal-textile industry for the reduction of the cognitive load of quality control workers}, series = {PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments}, booktitle = {PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments}, publisher = {ACM}, isbn = {9798400700699}, doi = {10.1145/3594806.3596558}, pages = {535 -- 542}, year = {2023}, abstract = {This paper presents an approach for reducing the cognitive load for humans working in quality control (QC) for production processes that adhere to the 6σ -methodology. While 100\% QC requires every part to be inspected, this task can be reduced when a human-in-the-loop QC process gets supported by an anomaly detection system that only presents those parts for manual inspection that have a significant likelihood of being defective. This approach shows good results when applied to image-based QC for metal textile products.}, language = {en} } @inproceedings{AlhwarinSchifferFerreinetal.2018, author = {Alhwarin, Faraj and Schiffer, Stefan and Ferrein, Alexander and Scholl, Ingrid}, title = {Optimized KinectFusion Algorithm for 3D Scanning Applications}, series = {Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING}, booktitle = {Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING}, isbn = {978-989-758-278-3}, doi = {10.5220/0006594700500057}, pages = {50 -- 57}, year = {2018}, language = {en} }