@incollection{BensbergAuthCzarnecki2021, author = {Bensberg, Frank and Auth, Gunnar and Czarnecki, Christian}, title = {Finding the perfect RPA match : a criteria-based selection method for RPA solutions}, series = {Robotic process automation : Management, technology, applications}, booktitle = {Robotic process automation : Management, technology, applications}, editor = {Czarnecki, Christian and Fettke, Peter}, publisher = {De Gruyter}, address = {Oldenbourg}, isbn = {978-3-11-067677-8}, doi = {10.1515/9783110676693-201}, pages = {47 -- 75}, year = {2021}, abstract = {The benefits of robotic process automation (RPA) are highly related to the usage of commercial off-the-shelf (COTS) software products that can be easily implemented and customized by business units. But, how to find the best fitting RPA product for a specific situation that creates the expected benefits? This question is related to the general area of software evaluation and selection. In the face of more than 75 RPA products currently on the market, guidance considering those specifics is required. Therefore, this chapter proposes a criteria-based selection method specifically for RPA. The method includes a quantitative evaluation of costs and benefits as well as a qualitative utility analysis based on functional criteria. By using the visualization of financial implications (VOFI) method, an application-oriented structure is provided that opposes the total cost of ownership to the time savings times salary (TSTS). For the utility analysis a detailed list of functional criteria for RPA is offered. The whole method is based on a multi-vocal review of scientific and non-scholarly literature including publications by business practitioners, consultants, and vendors. The application of the method is illustrated by a concrete RPA example. The illustrated structures, templates, and criteria can be directly utilized by practitioners in their real-life RPA implementations. In addition, a normative decision process for selecting RPA alternatives is proposed before the chapter closes with a discussion and outlook.}, language = {en} } @incollection{CzarneckiFettke2021, author = {Czarnecki, Christian and Fettke, Peter}, title = {Robotic process automation : Positioning, structuring, and framing the work}, series = {Robotic process automation : Management, technology, applications}, booktitle = {Robotic process automation : Management, technology, applications}, editor = {Czarnecki, Christian and Fettke, Peter}, publisher = {De Gruyter}, address = {Oldenbourg}, isbn = {978-3-11-067668-6 (Print)}, doi = {10.1515/9783110676693-202}, pages = {3 -- 24}, year = {2021}, abstract = {Robotic process automation (RPA) has attracted increasing attention in research and practice. This chapter positions, structures, and frames the topic as an introduction to this book. RPA is understood as a broad concept that comprises a variety of concrete solutions. From a management perspective RPA offers an innovative approach for realizing automation potentials, whereas from a technical perspective the implementation based on software products and the impact of artificial intelligence (AI) and machine learning (ML) are relevant. RPA is industry-independent and can be used, for example, in finance, telecommunications, and the public sector. With respect to RPA this chapter discusses definitions, related approaches, a structuring framework, a research framework, and an inside as well as outside architectural view. Furthermore, it provides an overview of the book combined with short summaries of each chapter.}, language = {en} } @incollection{CzarneckiHongSchmitzetal.2021, author = {Czarnecki, Christian and Hong, Chin-Gi and Schmitz, Manfred and Dietze, Christian}, title = {Enabling digital transformation through cognitive robotic process automation at Deutsche Telekom Services Europe}, series = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, booktitle = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, editor = {Urbach, Nils and R{\"o}glinger, Maximilian and Kautz, Karlheinz and Alias, Rose Alinda and Saunders, Carol and Wiener, Martin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-80002-4 (Print)}, doi = {10.1007/978-3-030-80003-1}, pages = {123 -- 138}, year = {2021}, abstract = {Subject of this case is Deutsche Telekom Services Europe (DTSE), a service center for administrative processes. Due to the high volume of repetitive tasks (e.g., 100k manual uploads of offer documents into SAP per year), automation was identified as an important strategic target with a high management attention and commitment. DTSE has to work with various backend application systems without any possibility to change those systems. Furthermore, the complexity of administrative processes differed. When it comes to the transfer of unstructured data (e.g., offer documents) to structured data (e.g., MS Excel files), further cognitive technologies were needed.}, language = {en} } @incollection{StriebingMuellerSchraudneretal.2022, author = {Striebing, Clemens and M{\"u}ller, J{\"o}rg and Schraudner, Martina and Gewinner, Irina Valerie and Guerrero Morales, Patricia and Hochfeld, Katharina and Hoffman, Shekinah and Kmec, Julie A. and Nguyen, Huu Minh and Schneider, Jannick and Sheridan, Jennifer and Steuer-Dankert, Linda and Trimble O'Connor, Lindsey and Vandevelde-Rougale, Agn{\`e}s}, title = {Promoting diversity and combatting discrimination in research organizations: a practitioner's guide}, series = {Diversity and discrimination in research organizations}, booktitle = {Diversity and discrimination in research organizations}, publisher = {Emerald Publishing Limited}, address = {Bingley}, isbn = {978-1-80117-959-1 (Print)}, doi = {10.1108/978-1-80117-956-020221012}, pages = {421 -- 442}, year = {2022}, abstract = {The essay is addressed to practitioners in research management and from academic leadership. It describes which measures can contribute to creating an inclusive climate for research teams and preventing and effectively dealing with discrimination. The practical recommendations consider the policy and organizational levels, as well as the individual perspective of research managers. Following a series of basic recommendations, six lessons learned are formulated, derived from the contributions to the edited collection on "Diversity and Discrimination in Research Organizations."}, language = {en} } @incollection{SteuerDankertLeichtScholten2022, author = {Steuer-Dankert, Linda and Leicht-Scholten, Carmen}, title = {Perceiving diversity : an explorative approach in a complex research organization.}, series = {Diversity and discrimination in research organizations}, booktitle = {Diversity and discrimination in research organizations}, publisher = {Emerald Publishing Limited}, address = {Bingley}, isbn = {978-1-80117-959-1 (Print)}, doi = {10.1108/978-1-80117-956-020221010}, pages = {365 -- 392}, year = {2022}, abstract = {Diversity management is seen as a decisive factor for ensuring the development of socially responsible innovations (Beacham and Shambaugh, 2011; Sonntag, 2014; L{\´o}pez, 2015; Uebernickel et al., 2015). However, many diversity management approaches fail due to a one-sided consideration of diversity (Thomas and Ely, 2019) and a lacking linkage between the prevailing organizational culture and the perception of diversity in the respective organization. Reflecting the importance of diverse perspectives, research institutions have a special responsibility to actively deal with diversity, as they are publicly funded institutions that drive socially relevant development and educate future generations of developers, leaders and decision-makers. Nevertheless, only a few studies have so far dealt with the influence of the special framework conditions of the science system on diversity management. Focusing on the interdependency of the organizational culture and diversity management especially in a university research environment, this chapter aims in a first step to provide a theoretical perspective on the framework conditions of a complex research organization in Germany in order to understand the system-specific factors influencing diversity management. In a second step, an exploratory cluster analysis is presented, investigating the perception of diversity and possible influencing factors moderating this perception in a scientific organization. Combining both steps, the results show specific mechanisms and structures of the university research environment that have an impact on diversity management and rigidify structural barriers preventing an increase of diversity. The quantitative study also points out that the management level takes on a special role model function in the scientific system and thus has an influence on the perception of diversity. Consequently, when developing diversity management approaches in research organizations, it is necessary to consider the top-down direction of action, the special nature of organizational structures in the university research environment as well as the special role of the professorial level as role model for the scientific staff.}, language = {en} } @incollection{HinkeVervierBrauneretal.2022, author = {Hinke, Christian and Vervier, Luisa and Brauner, Philipp and Schneider, Sebastian and Steuer-Dankert, Linda and Ziefle, Martina and Leicht-Scholten, Carmen}, title = {Capability configuration in next generation manufacturing}, series = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, booktitle = {Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07733-3}, doi = {10.1007/978-3-031-07734-0_6}, pages = {95 -- 106}, year = {2022}, abstract = {Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today's world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students.}, language = {en} } @incollection{BraunerVervierBrillowskietal.2022, author = {Brauner, Philipp and Vervier, Luisa and Brillowski, Florian and Dammers, Hannah and Steuer-Dankert, Linda and Schneider, Sebastian and Baier, Ralph and Ziefle, Martina and Gries, Thomas and Leicht-Scholten, Carmen and Mertens, Alexander and Nagel, Saskia K.}, title = {Organization Routines in Next Generation Manufacturing}, series = {Forecasting Next Generation Manufacturing}, booktitle = {Forecasting Next Generation Manufacturing}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07734-0}, doi = {10.1007/978-3-031-07734-0_5}, pages = {75 -- 94}, year = {2022}, abstract = {Next Generation Manufacturing promises significant improvements in performance, productivity, and value creation. In addition to the desired and projected improvements regarding the planning, production, and usage cycles of products, this digital transformation will have a huge impact on work, workers, and workplace design. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these changes, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the organization dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we highlight seven areas in which the digital transformation of production will change how we work, how we organize the work within a company, how we evaluate these changes, and how employment and labor rights will be affected across company boundaries. The experts are unsure whether the use of collaborative robots in factories will replace traditional robots by 2030. They believe that the use of hybrid intelligence will supplement human decision-making processes in production environments. Furthermore, they predict that artificial intelligence will lead to changes in management processes, leadership, and the elimination of hierarchies. However, to ensure that social and normative aspects are incorporated into the AI algorithms, restricting measurement of individual performance will be necessary. Additionally, AI-based decision support can significantly contribute toward new, socially accepted modes of leadership. Finally, the experts believe that there will be a reduction in the workforce by the year 2030.}, language = {en} } @incollection{vondenDrieschSteuerDankertBergetal.2020, author = {von den Driesch, Elena and Steuer-Dankert, Linda and Berg, Tobias and Leicht-Scholten, Carmen}, title = {Implementation of gender and diversity perspectives in transport development plans in germany}, series = {Engendering cities: designing sustainable urban spaces for all}, booktitle = {Engendering cities: designing sustainable urban spaces for all}, publisher = {Routledge}, address = {London}, isbn = {978-1-351-20090-5}, pages = {90 -- 109}, year = {2020}, abstract = {As mobility should ensure the accessibility to and participation in society, transport planning has to deal with a variety of gender and diversity categories affecting users' mobility needs and patterns. Exemplified by an analysis of an instrument of transport development processes - German Transport Development Plans (TDPs) - we investigated to what extent diverse target groups and their mobility requirements are implemented in transport strategy papers. Research results illustrate a still-prevalent neglect of several relevant gender and diversity categories while prioritizing and focusing on eco-friendly topics. But how sustainable can transport be without facing the diversification of life circumstances?}, language = {en} } @incollection{LeichtScholtenSteuerDankert2020, author = {Leicht-Scholten, Carmen and Steuer-Dankert, Linda}, title = {Educating engineers for socially responsible solutions through design thinking}, series = {Design thinking in higher education: interdisciplinary encounters}, booktitle = {Design thinking in higher education: interdisciplinary encounters}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-15-5780-4}, doi = {10.1007/978-981-15-5780-4}, pages = {229 -- 246}, year = {2020}, abstract = {There is a broad international discussion about rethinking engineering education in order to educate engineers to cope with future challenges, and particularly the sustainable development goals. In this context, there is a consensus about the need to shift from a mostly technical paradigm to a more holistic problem-based approach, which can address the social embeddedness of technology in society. Among the strategies suggested to address this social embeddedness, design thinking has been proposed as an essential complement to engineering precisely for this purpose. This chapter describes the requirements for integrating the design thinking approach in engineering education. We exemplify the requirements and challenges by presenting our approach based on our course experiences at RWTH Aachen University. The chapter first describes the development of our approach of integrating design thinking in engineering curricula, how we combine it with the Sustainable Development Goals (SDG) as well as the role of sustainability and social responsibility in engineering. Secondly, we present the course "Expanding Engineering Limits: Culture, Diversity, and Gender" at RWTH Aachen University. We describe the necessity to theoretically embed the method in social and cultural context, giving students the opportunity to reflect on cultural, national, or individual "engineering limits," and to be able to overcome them using design thinking as a next step for collaborative project work. The paper will suggest that the successful implementation of design thinking as a method in engineering education needs to be framed and contextualized within Science and Technology Studies (STS).}, language = {en} } @incollection{SteuerDankertBouffierGaedickeetal.2017, author = {Steuer-Dankert, Linda and Bouffier, Anna and Gaedicke, Sonja and Leicht-Scholten, Carmen}, title = {Diversifying engineering education: a transdisciplinary approach from RWTH Aachen University}, series = {Strategies for increasing diversity in engineering majors and careers}, booktitle = {Strategies for increasing diversity in engineering majors and careers}, publisher = {IGI Global}, address = {Hershey, USA}, isbn = {9781522522126}, doi = {10.4018/978-1-5225-2212-6.ch010}, pages = {201 -- 235}, year = {2017}, abstract = {Engineers and therefore engineering education are challenged by the increasing complexity of questions to be answered globally. The education of future engineers therefore has to answer with curriculums that build up relevant skills. This chapter will give an example how to bring engineering and social responsibility successful together to build engineers of tomorrow. Through the integration of gender and diversity perspectives, engineering research and teaching is expanded with new perspectives and contents providing an important potential for innovation. Aiming on the enhancement of engineering education with distinctive competencies beyond technical expertise, the teaching approach introduced in the chapter represents key factors to ensure that coming generations of engineers will be able to meet the requirements and challenges a changing globalized world holds for them. The chapter will describe how this approach successfully has been implemented in the curriculum in engineering of a leading technical university in Germany.}, language = {en} }