@article{BhattaraiMayStaatetal.2022, author = {Bhattarai, Aroj and May, Charlotte Anabell and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Layer-specific damage modeling of porcine large intestine under biaxial tension}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {10, Early Access}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering9100528}, pages = {1 -- 17}, year = {2022}, abstract = {The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads.}, language = {en} } @article{BhattaraiHorbachStaatetal.2022, author = {Bhattarai, Aroj and Horbach, Andreas and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Virgin passive colon biomechanics and a literature review of active contraction constitutive models}, series = {Biomechanics}, volume = {2}, journal = {Biomechanics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2673-7078}, doi = {10.3390/biomechanics2020013}, pages = {138 -- 157}, year = {2022}, abstract = {The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel-Gasser-Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill's three-element model, Murphy's four-state cross-bridge chemical kinetic model and Huxley's sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.}, language = {en} } @article{NguyenXuanRabczukNguyenThoietal.2011, author = {Nguyen-Xuan, H. and Rabczuk, T. and Nguyen-Thoi, T. and Tran, Thanh Ngoc and Nguyen-Thanh, N.}, title = {Computation of limit and shakedown loads using a node-based smoothed finite element method}, series = {International Journal for Numerical Methods in Engineering}, volume = {90}, journal = {International Journal for Numerical Methods in Engineering}, number = {3}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0207}, doi = {10.1002/nme.3317}, pages = {287 -- 310}, year = {2011}, language = {en} } @phdthesis{Tran2008, author = {Tran, Thanh Ngoc}, title = {Limit and shakedown analysis of plates and shells including uncertainties}, year = {2008}, language = {en} } @incollection{TranTranMatthiesetal.2017, author = {Tran, N. T. and Tran, Thanh Ngoc and Matthies, M. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming}, series = {Advances in Direct Methods for Materials and Structures}, booktitle = {Advances in Direct Methods for Materials and Structures}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-59810-9}, doi = {10.1007/978-3-319-59810-9_6}, pages = {85 -- 103}, year = {2017}, abstract = {In this paper we propose a stochastic programming method to analyse limit and shakedown of structures under uncertainty condition of strength. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) with three-node linear triangular elements is used for structural analysis.}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {FEM Shakedown of uncertain structures by chance constrained programming}, series = {PAMM Proceedings in Applied Mathematics and Mechanics}, volume = {16}, booktitle = {PAMM Proceedings in Applied Mathematics and Mechanics}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.201610346}, pages = {715 -- 716}, year = {2016}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, H. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown analysis of plate bending analysis under stochastic uncertainty by chance constrained programming}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} } @article{DuongNguyenTranetal.2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Tran, Thanh Ngoc and Tolba, R. H. and Staat, Manfred}, title = {Influence of refrigerated storage on tensile mechanical properties of porcine liver and spleen}, series = {International biomechanics}, volume = {Vol. 2}, journal = {International biomechanics}, number = {Iss. 1}, publisher = {Taylor \& Francis}, address = {London}, issn = {2333-5432}, doi = {10.1080/23335432.2015.1049295}, pages = {79 -- 88}, year = {2015}, language = {en} } @incollection{TranStaat2015, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertainty multimode failure and shakedown analysis of shells}, series = {Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ...}, booktitle = {Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ...}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12927-3 (print) ; 978-3-319-12928-0 (online)}, doi = {10.1007/978-3-319-12928-0_14}, pages = {279 -- 298}, year = {2015}, abstract = {This paper presents a numerical procedure for reliability analysis of thin plates and shells with respect to plastic collapse or to inadaptation. The procedure involves a deterministic shakedown analysis for each probabilistic iteration, which is based on the upper bound approach and the use of the exact Ilyushin yield surface. Probabilistic shakedown analysis deals with uncertainties originated from the loads, material strength and thickness of the shell. Based on a direct definition of the limit state function, the calculation of the failure probability may be efficiently solved by using the First and Second Order Reliability Methods (FORM and SORM). The problem of reliability of structural systems (series systems) is handled by the application of a special technique which permits to find all the design points corresponding to all the failure modes. Studies show, in this case, that it improves considerably the FORM and SORM results.}, language = {en} } @inproceedings{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertain multimode failure and limit analysis of shells}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} }