@article{OrzadaMaderwaldPoseretal.2010, author = {Orzada, Stephan and Maderwald, Stefan and Poser, Benedikt Andreas and Bitz, Andreas and Quick, Harald H. and Ladd, Mark E.}, title = {RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI}, series = {Magnetic Resonance in Medicine}, volume = {64}, journal = {Magnetic Resonance in Medicine}, number = {2}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.22527}, pages = {327 -- 333}, year = {2010}, abstract = {As the field strength and, therefore, the operational frequency in MRI is increased, the wavelength approaches the size of the human head/body, resulting in wave effects, which cause signal decreases and dropouts. Several multichannel approaches have been proposed to try to tackle these problems, including RF shimming, where each element in an array is driven by its own amplifier and modulated with a certain (constant) amplitude and phase relative to the other elements, and Transmit SENSE, where spatially tailored RF pulses are used. In this article, a relatively inexpensive and easy to use imaging scheme for 7 Tesla imaging is proposed to mitigate signal voids due to B1 field inhomogeneity. Two time-interleaved images are acquired using a different excitation mode for each. By forming virtual receive elements, both images are reconstructed together using GRAPPA to achieve a more homogeneous image, with only small SNR and SAR penalty in head and body imaging at 7 Tesla.}, language = {en} } @article{UmutluOrzadaKinneretal.2011, author = {Umutlu, Lale and Orzada, Stephan and Kinner, Sonja and Maderwald, Stefan and Bronte, Irina and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Antoch, Gerald and Ladd, Mark E. and Quick, Harald H. and Lauenstein, Thomas C.}, title = {Renal imaging at 7 Tesla: preliminary results}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, pages = {841 -- 849}, year = {2011}, abstract = {Objective To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil. Methods In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists. Results Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers. Conclusion The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value.}, language = {en} } @article{ChenSchoembergKraffetal.2016, author = {Chen, Bixia and Schoemberg, Tobias and Kraff, Oliver and Dammann, Philipp and Bitz, Andreas and Schlamann, Marc and Quick, Harald H. and Ladd, Mark E. and Sure, Ulrich and Wrede, Karsten H.}, title = {Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {29}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-016-0548-1}, pages = {389 -- 398}, year = {2016}, abstract = {Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.}, language = {en} } @article{NoureddineKraffLaddetal.2017, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten H. and Chen, Bixia and Quick, Harald H. and Schaefers, Gregor and Bitz, Andreas}, title = {In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.26650}, pages = {14 Seiten}, year = {2017}, language = {en} }