@article{RachingerBauchStrittmatteretal.2013, author = {Rachinger, Michael and Bauch, Melanie and Strittmatter, Axel and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and Daniel, Rolf and Liebl, Wolfgang and Liesegang, Heiko and Ehrenreich, Armin}, title = {Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis}, series = {Journal of biotechnology}, volume = {Vol. 164}, journal = {Journal of biotechnology}, number = {Iss. 4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, pages = {365 -- 369}, year = {2013}, language = {en} } @article{VoigtSchroeterJuergenetal.2013, author = {Voigt, Birgit and Schroeter, Rebecca and J{\"u}rgen, Britta and Albrecht, Dirk and Evers, Stefan and Bongaerts, Johannes and Maurer, Karl-Heinz and Schweder, Thomas and Hecker, Michael}, title = {The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon}, series = {Proteomics}, volume = {Vol. 13}, journal = {Proteomics}, number = {Iss. 14}, publisher = {Wiley}, address = {Weinheim}, issn = {1615-9861 (E-Journal); 1615-9853 (Print)}, pages = {2140 -- 2146}, year = {2013}, language = {en} } @article{WilmingBegemannKuhneetal.2013, author = {Wilming, Anja and Begemann, Jens and Kuhne, Stefan and Regestein, Lars and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and B{\"u}chs, Jochen}, title = {Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations}, series = {Biochemical engineering journal}, volume = {Vol. 73}, journal = {Biochemical engineering journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-295X (E-Journal); 1369-703X (Print)}, pages = {29 -- 37}, year = {2013}, language = {en} } @article{ScheeleOertelBongaertsetal.2013, author = {Scheele, Sandra and Oertel, Dan and Bongaerts, Johannes and Evers, Stefan and Hellmuth, Hendrik and Maurer, Karl-Heinz and Bott, Michael and Freudl, Roland}, title = {Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum}, series = {Microbial biotechnology}, journal = {Microbial biotechnology}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1751-7915}, pages = {202 -- 206}, year = {2013}, language = {en} } @article{BorgmeierBongaertsMeinhardt2012, author = {Borgmeier, Claudia and Bongaerts, Johannes and Meinhardt, Friedhelm}, title = {Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production}, series = {Journal of biotechnology}, volume = {159}, journal = {Journal of biotechnology}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2012.02.011}, pages = {12 -- 20}, year = {2012}, abstract = {Disruption experiments targeted at the Bacillus licheniformis degSU operon and GFP-reporter analysis provided evidence for promoter activity immediately upstream of degU. pMutin mediated concomitant introduction of the degU32 allele - known to cause hypersecretion in Bacillus subtilis - resulted in a marked increase in protease activity. Application of 5-fluorouracil based counterselection through establishment of a phosphoribosyltransferase deficient Δupp strain eventually facilitated the marker-free introduction of degU32 leading to further protease enhancement achieving levels as for hypersecreting wild strains in which degU was overexpressed. Surprisingly, deletion of rapG - known to interfere with DegU DNA-binding in B. subtilis - did not enhance protease production neither in the wild type nor in the degU32 strain. The combination of degU32 and Δupp counterselection in the type strain is not only equally effective as in hypersecreting wild strains with respect to protease production but furthermore facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes.}, language = {en} } @article{BongaertsEsserLorbachetal.2011, author = {Bongaerts, Johannes and Esser, Simon and Lorbach, Volker and Al-Momani, L{\´o}ay and M{\"u}ller, Michael A. and Franke, Dirk and Grondal, Christoph and Kurutsch, Anja and Bujnicki, Robert and Takors, Ralf and Raeven, Leon and Wubbolts, Marcel and Bovenberg, Roel and Nieger, Martin and Sch{\"u}rmann, Melanie and Trachtmann, Natalie and Kozak, Stefan and Sprenger, Georg A. and M{\"u}ller, Michael}, title = {Diversity-oriented production of metabolites derived from chorismate and their use in organic synthesis}, series = {Angewandte Chemie International Edition}, volume = {Vol. 50}, journal = {Angewandte Chemie International Edition}, number = {Iss. 34}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-3773 (E-Journal); 0570-0833 (Print); 1433-7851 (Print)}, pages = {7781 -- 7786}, year = {2011}, language = {en} } @article{DeppeKlatteBongaertsetal.2011, author = {Deppe, Veronika Maria and Klatte, Stephanie and Bongaerts, Johannes and Maurer, Karl-Heinz and O'Connell, Timothy and Meinhardt, Friedhelm}, title = {Genetic control of Amadori product degradation in Bacillus subtilis via regulation of frlBONMD expression by FrlR}, series = {Applied and environmental microbiology}, volume = {Vol. 77}, journal = {Applied and environmental microbiology}, number = {No. 9}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, issn = {1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print)}, pages = {2839 -- 2846}, year = {2011}, language = {en} } @article{DeppeBongaertsO'Connelletal.2011, author = {Deppe, Veronika Maria and Bongaerts, Johannes and O'Connell, Timothy and Maurer, Karl-Heinz and Meinhardt, Friedhelm}, title = {Enzymatic deglycation of Amadori products in bacteria}, series = {Applied microbiology and biotechnology}, volume = {Vol. 90}, journal = {Applied microbiology and biotechnology}, number = {Iss. 2}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print)}, pages = {399 -- 406}, year = {2011}, language = {en} } @article{DegeringEggertPulsetal.2010, author = {Degering, Christian and Eggert, Thorsten and Puls, Michael and Bongaerts, Johannes and Evers, Stefan and Maurer, Karl-Heinz and Jaeger, Karl-Erich}, title = {Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and herologous signal peptides}, series = {Applied and environmental microbiology}, volume = {76}, journal = {Applied and environmental microbiology}, number = {19}, publisher = {American Society for Microbiology}, address = {Washington, DC}, issn = {1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print)}, doi = {10.1128/AEM.01146-10}, pages = {6370 -- 6378}, year = {2010}, abstract = {Bacillus subtilis and Bacillus licheniformis are widely used for the large-scale industrial production of proteins. These strains can efficiently secrete proteins into the culture medium using the general secretion (Sec) pathway. A characteristic feature of all secreted proteins is their N-terminal signal peptides, which are recognized by the secretion machinery. Here, we have studied the production of an industrially important secreted protease, namely, subtilisin BPN′ from Bacillus amyloliquefaciens. One hundred seventy-three signal peptides originating from B. subtilis and 220 signal peptides from the B. licheniformis type strain were fused to this secretion target and expressed in B. subtilis, and the resulting library was analyzed by high-throughput screening for extracellular proteolytic activity. We have identified a number of signal peptides originating from both organisms which produced significantly increased yield of the secreted protease. Interestingly, we observed that levels of extracellular protease were improved not only in B. subtilis, which was used as the screening host, but also in two different B. licheniformis strains. To date, it is impossible to predict which signal peptide will result in better secretion and thus an improved yield of a given extracellular target protein. Our data show that screening a library consisting of homologous and heterologous signal peptides fused to a target protein can identify more-effective signal peptides, resulting in improved protein export not only in the original screening host but also in different production strains.}, language = {en} } @article{ScheeleBongaertsMaureretal.2009, author = {Scheele, S. and Bongaerts, Johannes and Maurer, K.-H. and Freudl, R.}, title = {Sekretion einer Kofaktor-haltigen Oxidase durch Corynebacterium glutamicum}, series = {Chemie - Ingenieur - Technik (CIT)}, volume = {Vol. 81}, journal = {Chemie - Ingenieur - Technik (CIT)}, number = {Iss. 8}, issn = {1522-2640 (E-Journal); 0009-286X (Print)}, pages = {1309}, year = {2009}, language = {de} }