@article{TranMottaghyArltKoerferetal.2017, author = {Tran, Linda and Mottaghy, K. and Arlt-K{\"o}rfer, Sabine and Waluga, Christian and Behbahani, Mehdi}, title = {An experimental study of shear-dependent human platelet adhesion and underlying protein-binding mechanisms in a cylindrical Couette system}, series = {Biomedizinische Technik}, volume = {62}, journal = {Biomedizinische Technik}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0013-5585}, doi = {10.1515/bmt-2015-0034}, pages = {383 -- 392}, year = {2017}, language = {en} } @article{ThiebesKleinZingsheimetal.2022, author = {Thiebes, Anja Lena and Klein, Sarah and Zingsheim, Jonas and M{\"o}ller, Georg H. and G{\"u}rzing, Stefanie and Reddemann, Manuel A. and Behbahani, Mehdi and Cornelissen, Christian G.}, title = {Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio}, series = {pharmaceutics}, volume = {14}, journal = {pharmaceutics}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/pharmaceutics14112421}, pages = {Artikel 2421}, year = {2022}, abstract = {Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4-33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90\% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50\%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing.}, language = {en} } @article{SteinseiferKashefiHormesetal.2009, author = {Steinseifer, Ulrich and Kashefi, Ali and Hormes, Marcus and Schoberer, Mark and Orlikowsky, Thorsten and Behbahani, Mehdi and Behr, Marek and Schmitz-Rode, Thomas}, title = {Miniaturization of ECMO Systems : Engineering Challenges and Methods}, series = {Artificial Organs. 33 (2009), H. 5}, journal = {Artificial Organs. 33 (2009), H. 5}, isbn = {1525-1594}, pages = {A55 -- A55}, year = {2009}, language = {en} } @inproceedings{SchmitzApandiSpillneretal.2024, author = {Schmitz, Annika and Apandi, Shah Eiman Amzar Shah and Spillner, Jan and Hima, Flutura and Behbahani, Mehdi}, title = {Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis}, series = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, booktitle = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {29 -- 30}, year = {2024}, abstract = {Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA.}, language = {en} } @article{ProbstBehbahaniBorrmannetal.2010, author = {Probst, M. and Behbahani, Mehdi and Borrmann, E. and Elgeti, S. and Nicolai, M. and Behr, M.}, title = {Hemodynamic Modeling for Numerical Analysis and Design of Medical Devices}, year = {2010}, language = {en} } @article{PookhalilAmoabedinyTabeshetal.2016, author = {Pookhalil, Ali and Amoabediny, Ghassem and Tabesh, Hadi and Behbahani, Mehdi and Mottaghy, Khosrow}, title = {A new approach for semiempirical modeling of mechanical blood trauma}, series = {The international journal of artificial organs}, volume = {39}, journal = {The international journal of artificial organs}, number = {4}, publisher = {Sage}, address = {London}, issn = {1724-6040}, doi = {10.5301/ijao.5000474}, pages = {171 -- 177}, year = {2016}, abstract = {Purpose Two semi-empirical models were recently published, both making use of existing literature data, but each taking into account different physical phenomena that trigger hemolysis. In the first model, hemoglobin (Hb) release is described as a permeation procedure across the membrane, assuming a shear stress-dependent process (sublethal model). The second model only accounts for hemoglobin release that is caused by cell membrane breakdown, which occurs when red blood cells (RBC) undergo mechanically induced shearing for a period longer than the threshold time (nonuniform threshold model). In this paper, we introduce a model that considers the hemolysis generated by both these possible phenomena. Methods Since hemolysis can possibly be caused by permeation of hemoglobin through the RBC functional membrane as well as by release of hemoglobin from RBC membrane breakdown, our proposed model combines both these models. An experimental setup consisting of a Couette device was utilized for validation of our proposed model. Results A comparison is presented between the damage index (DI) predicted by the proposed model vs. the sublethal model vs. the nonthreshold model and experimental datasets. This comparison covers a wide range of shear stress for both human and porcine blood. An appropriate agreement between the measured DI and the DI predicted by the present model was obtained. Conclusions The semiempirical hemolysis model introduced in this paper aims for significantly enhanced conformity with experimental data. Two phenomenological outcomes become possible with the proposed approach: an estimation of the average time after which cell membrane breakdown occurs under the applied conditions, and a prediction of the ratio between the phenomena involved in hemolysis.}, language = {en} } @article{NamAroraBehbahanietal.2010, author = {Nam, J. and Arora, D. and Behbahani, Mehdi and Probst, M. and Benkowski, R. and Behr, M. and Pasquali, M.}, title = {New computational method in hemolysis analysis for artificial heart pump}, year = {2010}, language = {en} } @inproceedings{MarinovaKerroumiLintermannetal.2016, author = {Marinova, V. and Kerroumi, I. and Lintermann, A. and G{\"o}bbert, J.H. and Moulinec, C. and Rible, S. and Fournier, Y. and Behbahani, Mehdi}, title = {Numerical Analysis of the FDA Centrifugal Blood Pump}, series = {NIC Symposium 2016}, booktitle = {NIC Symposium 2016}, isbn = {978-3-95806-109-5}, pages = {355 -- 364}, year = {2016}, language = {de} } @inproceedings{MandekarJentschLutzetal.2021, author = {Mandekar, Swati and Jentsch, Lina and Lutz, Kai and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Earable design analysis for sleep EEG measurements}, series = {UbiComp '21}, booktitle = {UbiComp '21}, doi = {10.1145/3460418.3479328}, pages = {171 -- 175}, year = {2021}, abstract = {Conventional EEG devices cannot be used in everyday life and hence, past decade research has been focused on Ear-EEG for mobile, at-home monitoring for various applications ranging from emotion detection to sleep monitoring. As the area available for electrode contact in the ear is limited, the electrode size and location play a vital role for an Ear-EEG system. In this investigation, we present a quantitative study of ear-electrodes with two electrode sizes at different locations in a wet and dry configuration. Electrode impedance scales inversely with size and ranges from 450 kΩ to 1.29 MΩ for dry and from 22 kΩ to 42 kΩ for wet contact at 10 Hz. For any size, the location in the ear canal with the lowest impedance is ELE (Left Ear Superior), presumably due to increased contact pressure caused by the outer-ear anatomy. The results can be used to optimize signal pickup and SNR for specific applications. We demonstrate this by recording sleep spindles during sleep onset with high quality (5.27 μVrms).}, language = {en} } @article{MandekarHollandThielenetal.2022, author = {Mandekar, Swati and Holland, Abigail and Thielen, Moritz and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22041568}, pages = {1 -- 19}, year = {2022}, abstract = {Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG.}, language = {en} }