@article{ZiemonsBruyndonckxPerezetal.2008, author = {Ziemons, Karl and Bruyndonckx, P. and Perez, J. M. and Pietrzyk, U. and Rato, P. and Tavernier, S.}, title = {Beyond ClearPET: Next Aims}, series = {5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro Symposium Proceedings ISBI 2008}, journal = {5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro Symposium Proceedings ISBI 2008}, isbn = {978-1-4244-2003-2}, pages = {1421 -- 1424}, year = {2008}, abstract = {The CRYSTAL CLEAR collaboration, in short CCC, is a consortium of 12 academic institutions, mainly from Europe, joining efforts in the area of developing instrumentation for nuclear medicine and medical imaging. In the framework of the CCC a high performance small animal PET system, called ClearPET, was developed by using new technologies in electronics and crystals in a phoswich arrangement combining two types of lutetium- based scintillator materials: LSO:Ce and LuYAP:Ce. Our next aim will be the development of hybrid image systems. Hybrid MR-PET imaging has many unique advantages for brain research. This has sparked a new research line within CCC for the development of novel MR-PET compatible technologies. MRI is not as sensitive as PET but PET has poorer spatial resolution than MRI. Two major advantages of PET are sensitivity and its ability to acquire metabolic information. To assess these innovations, the development of a 9.4T hybrid animal MR-PET scanner is proposed based on an existing 9.4T MR scanner that will be adapted to enable simultaneous acquisition of MR and PET data using cutting- edge technology for both MR and PET.}, language = {en} } @article{VantStaatBaroud2008, author = {Vant, Christianne and Staat, Manfred and Baroud, Gamal}, title = {Percutaneous Vertebroplasty: A Review of Two Intraoperative Complications}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {527 -- 539}, year = {2008}, language = {en} } @article{TurekKeusgenPoghossianetal.2008, author = {Turek, M. and Keusgen, M. and Poghossian, Arshak and Mulchandani, A. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {Enzyme-modified electrolyte-insulator-semiconductor sensors}, series = {Journal of Contemporary Physics. 43 (2008), H. 2}, journal = {Journal of Contemporary Physics. 43 (2008), H. 2}, isbn = {1934-9378}, pages = {82 -- 85}, year = {2008}, language = {en} } @article{TrillaGrossenRobinsonetal.2008, author = {Trilla, Joan and Grossen, J{\"u}rgen and Robinson, Alexander and Funke, Harald and Bosschaerts, Walter and Hendrick, Patrick}, title = {Development of a hydrogen combustion chamber for an ultra micro gas turbine}, series = {PowerMEMS 2008, 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, microEMS 2008, 2nd Symposium on Micro Environmental Machine Systems, Sendai, JP, Nov 9-12, 2008}, journal = {PowerMEMS 2008, 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, microEMS 2008, 2nd Symposium on Micro Environmental Machine Systems, Sendai, JP, Nov 9-12, 2008}, pages = {101 -- 104}, year = {2008}, language = {en} } @article{TranKreissigVuetal.2008, author = {Tran, Thanh Ngoc and Kreißig, R. and Vu, Duc Khoi and Staat, Manfred}, title = {Upper bound limit and shakedown analysis of shells using the exact Ilyushin yield surface}, series = {Computer \& Structures. 86 (2008)}, journal = {Computer \& Structures. 86 (2008)}, isbn = {0045-7949}, pages = {1683 -- 1695}, year = {2008}, language = {en} } @article{TippkoetterRoikaewUlber2008, author = {Tippk{\"o}tter, Nils and Roikaew, W. and Ulber, R.}, title = {Nitrate removal from whey concentrate with biotechnological regeneration of the waste water}, series = {European dairy magazine : EDM}, journal = {European dairy magazine : EDM}, number = {1}, isbn = {0936-6318}, pages = {30 -- 32}, year = {2008}, language = {en} } @article{TippkoetterDeterdingUlber2008, author = {Tippk{\"o}tter, Nils and Deterding, A. and Ulber, Roland}, title = {Determination of acetic acid in fermentation broth by gas-diffusion technique}, series = {Engineering in Life Sciences}, volume = {8}, journal = {Engineering in Life Sciences}, number = {1, Special Issue: Technical Systems for the Use in Life Sciences}, doi = {10.1002/elsc.200820227}, pages = {62 -- 67}, year = {2008}, abstract = {Due to the interfering effects of acetic acid in many fermentation processes, a gas-diffusion technique was developed for the online determination of acetic acid. The measurements were accomplished with a flow diffusion analysis (FDA) unit from the TRACE Analytics GmbH, Braunschweig, Germany. The diffusion analysis is based on the UV-absorbance of acetic acid at 205 nm. The measurement was achieved by the separation of an acceptor and a carrier stream (acidified fermentation broth) using a gas permeable polytetrafluoroethylene (PTFE) membrane, whereby broth constituents that would otherwise disturb the UV-measurement of acetic acid, are held back efficiently. Merely, the fermentation by-products, e.g. formic acid, is capable of diffusing through the membrane. While formic acid can disturb the measurement, carbon dioxide does not absorb at 205 nm. The method operates with time-dependent sample enrichment. During the analysis, a small volume of the acceptor stream is stopped for a defined time interval in the acceptor chamber. During this period, the gaseous acetic acid diffuses through the membrane and is enriched in the acceptor chamber. Subsequently after the enrichment, the acceptor stream flows through a UV-detector. The intensity of the signal is proportional to the acetic acid concentration. Online measurements in bioreactors via a sterile filtration probe have been accomplished. A linear calibration in the range of 0.5-5.0 g/L acetic acid with a relative standard deviation of <5 \% was obtained. A sampling rate of 8 samples per hour was possible. The system was applied for the determination of acetic acid in E. coli fermentation broth. The instrument is easy to clean, very user-friendly and does not require any toxic or expensive reagents.}, language = {en} } @article{TemizArtmannKayser2008, author = {Temiz Artmann, Ayseg{\"u}l and Kayser, Peter}, title = {Why is Sepsis an Ongoing Clinical Challenge? Lipopolysaccharide Effects on Red Blood Cell Volume / Temiz, Ayseg{\"u}l ; Kayser, Peter}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {497 -- 508}, year = {2008}, language = {en} } @article{StulpeBusch2008, author = {Stulpe, Werner and Busch, Paul}, title = {The structure of classical extensions of quantum probability theory}, series = {Journal of Mathematical Physics. 49 (2008), H. 3}, journal = {Journal of Mathematical Physics. 49 (2008), H. 3}, isbn = {1089-7658}, pages = {1 -- 22}, year = {2008}, language = {en} } @article{StreunBeerHombachetal.2008, author = {Streun, M. and Beer, S. and Hombach, T. and Jahnke, S. and Khodaverdi, M. and Larue, H. and Minwuyelet, S. and Parl, C. and Roeb, G. and Schurr, U. and Ziemons, Karl}, title = {PlanTIS: A positron emission tomograph for imaging 11C transport in plants}, series = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, journal = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, isbn = {1082-3654}, pages = {4110 -- 4112}, year = {2008}, abstract = {Plant growth and transport processes are highly dynamic. They are characterized by plant-internal control processes and by strong interactions with the spatially and temporally varying environment. Analysis of structure- function relations of growth and transport in plants will strongly benefit from the development of non-invasive techniques. PlanTIS (Plant Tomographic Imaging System) is designed for non-destructive 3D-imaging of positron emitting radiotracers. It will permit functional analysis of the dynamics of carbon distribution in plants including bulky organs. It will be applicable for screening transport properties of plants to evaluate e.g. temperature adaptation of genetically modified plants. PlanTIS is a PET scanner dedicated to monitor the dynamics of the 11C distribution within a plant while or after assimilation of 11CO2. Front end electronics and data acquisition architecture of the scanner are based on the ClearPETTM system [1]. Four detector modules form one of two opposing detector blocks. Optionally, a hardware coincidence detection between the blocks can be applied. In general the scan duration is rather long (~ 1 hour) compared to the decay time of 11C (20 min). As a result the count rates can vary over a wide range and accurate dead time correction is necessary.}, language = {en} }