@incollection{AltayTaddeiButenwegetal.2014, author = {Altay, Okyay and Taddei, Francesca and Butenweg, Christoph and Klinkel, Sven}, title = {Vibration mitigation of wind turbine towers with tuned mass dampers}, series = {Wind turbine control and monitoring. (Advances in industrial control)}, booktitle = {Wind turbine control and monitoring. (Advances in industrial control)}, publisher = {Springer}, address = {Cham ; Heidelberg ; New York ; Dordrecht ; London}, isbn = {978-3-319-08412-1 (Print) ; 978-3-319-08413-8 (E-Book)}, doi = {10.1007/978-3-319-08413-8_12}, pages = {337 -- 373}, year = {2014}, abstract = {Because of its minor environmental impact, electricity generation using wind power is getting remarkable. The further growth of the wind industry depends on technological solutions to the challenges in production and construction of the turbines. Wind turbine tower vibrations, which limit power generation efficiency and cause fatigue problems with high maintenance costs, count as one of the main structural difficulties in the wind energy sector. To mitigate tower vibrations auxiliary measures are necessary. The effectiveness of tuned mass damper is verified by means of a numeric study on a 5 MW onshore reference wind turbine. Hereby, also seismic-induced vibrations and soil-structure interaction are considered. Acquired results show that tuned mass damper can effectively reduce resonant tower vibrations and improve the fatigue life of wind turbines. This chapter is also concerned with tuned liquid column damper and a semiactive application of it. Due to its geometric versatility and low prime costs, tuned liquid column dampers are a good alternative to other damping measures, in particular for slender structures like wind turbines.}, language = {en} } @incollection{HeuermannFinger2014, author = {Heuermann, Holger and Finger, Torsten}, title = {Microwave Spark Plug for Very High-Pressure Conditions}, series = {Ignition systems for gasoline engines}, booktitle = {Ignition systems for gasoline engines}, editor = {G{\"u}nther, Michael}, publisher = {DCM Druck}, address = {Meckenheim}, pages = {269 -- 282}, year = {2014}, language = {en} } @incollection{AlhwarinFerreinScholl2014, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {IR stereo kinect: improving depth images by combining structured light with IR stereo}, series = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, booktitle = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, publisher = {Springer}, address = {M{\"u}nchen}, isbn = {978-3-319-13559-5 (Print) ; 978-3-319-13560-1 (E-Book)}, doi = {10.1007/978-3-319-13560-1_33}, pages = {409 -- 421}, year = {2014}, abstract = {RGB-D sensors such as the Microsoft Kinect or the Asus Xtion are inexpensive 3D sensors. A depth image is computed by calculating the distortion of a known infrared light (IR) pattern which is projected into the scene. While these sensors are great devices they have some limitations. The distance they can measure is limited and they suffer from reflection problems on transparent, shiny, or very matte and absorbing objects. If more than one RGB-D camera is used the IR patterns interfere with each other. This results in a massive loss of depth information. In this paper, we present a simple and powerful method to overcome these problems. We propose a stereo RGB-D camera system which uses the pros of RGB-D cameras and combine them with the pros of stereo camera systems. The idea is to utilize the IR images of each two sensors as a stereo pair to generate a depth map. The IR patterns emitted by IR projectors are exploited here to enhance the dense stereo matching even if the observed objects or surfaces are texture-less or transparent. The resulting disparity map is then fused with the depth map offered by the RGB-D sensor to fill the regions and the holes that appear because of interference, or due to transparent or reflective objects. Our results show that the density of depth information is increased especially for transparent, shiny or matte objects.}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, booktitle = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, publisher = {CRC Pr.}, address = {Boca Raton, Fla.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @incollection{KirchnerReisertSchoening2014, author = {Kirchner, Patrick and Reisert, Steffen and Sch{\"o}ning, Michael Josef}, title = {Calorimetric gas sensors for hydrogen peroxide monitoring in aseptic food processes}, series = {Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15)}, booktitle = {Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-642-54518-4 (Print) ; 978-3-642-54519-1 (Online)}, doi = {10.1007/5346_2013_51}, pages = {279 -- 309}, year = {2014}, abstract = {For the sterilisation of aseptic food packages it is taken advantage of the microbicidal properties of hydrogen peroxide (H2O2). Especially, when applied in vapour phase, it has shown high potential of microbial inactivation. In addition, it offers a high environmental compatibility compared to other chemical sterilisation agents, as it decomposes into oxygen and water, respectively. Due to a lack in sensory detection possibilities, a continuous monitoring of the H2O2 concentration was recently not available. Instead, the sterilisation efficacy is validated using microbiological tests. However, progresses in the development of calorimetric gas sensors during the last 7 years have made it possible to monitor the H2O2 concentration during operation. This chapter deals with the fundamentals of calorimetric gas sensing with special focus on the detection of gaseous hydrogen peroxide. A sensor principle based on a calorimetric differential set-up is described. Special emphasis is given to the sensor design with respect to the operational requirements under field conditions. The state-of-the-art regarding a sensor set-up for the on-line monitoring and secondly, a miniaturised sensor for in-line monitoring are summarised. Furthermore, alternative detection methods and a novel multi-sensor system for the characterisation of aseptic sterilisation processes are described.}, language = {en} } @incollection{KnottSofroniaGerressenetal.2014, author = {Knott, Thomas C. and Sofronia, Raluca E. and Gerressen, Marcus and Law, Yuen and Davidescu, Arjana and Savii, George G. and Gatzweiler, Karl-Heinz and Staat, Manfred and Kuhlen, Torsten W.}, title = {Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy}, series = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, booktitle = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12057-7 (Online)}, doi = {10.1007/978-3-319-12057-7_1}, pages = {1 -- 10}, year = {2014}, abstract = {Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted.}, language = {en} } @incollection{NiemuellerEwertReuteretal.2014, author = {Niem{\"u}ller, Tim and Ewert, Daniel and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {RoboCup logistics league sponsored by festo: A competitive factory automation testbed}, series = {RoboCup 2013: Robot World Cup XVII : Eindhoven; Netherlands; 1 July 2013 through 1 July 2013. (Lecture notes in computer science ; 8371)}, booktitle = {RoboCup 2013: Robot World Cup XVII : Eindhoven; Netherlands; 1 July 2013 through 1 July 2013. (Lecture notes in computer science ; 8371)}, publisher = {Springer}, address = {Berlin}, organization = {RoboCup International Symposium <17, 2013, Eindhoven>}, isbn = {978-3-662-44467-2 (Print) 978-3-662-44468-9 (Online)}, pages = {336 -- 347}, year = {2014}, abstract = {A new trend in automation is to deploy so-called cyber-physical systems (CPS) which combine computation with physical processes. The novel RoboCup Logistics League Sponsored by Festo (LLSF) aims at such CPS logistic scenarios in an automation setting. A team of robots has to produce products from a number of semi-finished products which they have to machine during the game. Different production plans are possible and the robots need to recycle scrap byproducts. This way, the LLSF is a very interesting league offering a number of challenging research questions for planning, coordination, or communication in an application-driven scenario. In this paper, we outline the objectives of the LLSF and present steps for developing the league further towards a benchmark for logistics scenarios for CPS. As a major milestone we present the new automated referee system which helps in governing the game play as well as keeping track of the scored points in a very complex factory scenario.}, language = {en} } @incollection{PoghossianWeilandSchoening2014, author = {Poghossian, Arshak and Weiland, Maryam and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing}, series = {Multisensor system for chemical analysis : materials and sensors}, booktitle = {Multisensor system for chemical analysis : materials and sensors}, editor = {Lvova, Larisa and Kirsanov, Dmitry and di Natale, Corrado and Legin, Audrey}, edition = {1}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4411-15-8 ; 978-981-4411-16-5}, doi = {10.1201/b15491-11}, pages = {333 -- 373}, year = {2014}, abstract = {An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events.}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical composition measurement}, series = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, booktitle = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, edition = {2nd ed.}, publisher = {CRC Pr.}, address = {Boca Raton, Fa.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @incollection{MacdonaldMcGrathAppourchauxetal.2014, author = {Macdonald, Malcolm and McGrath, C. and Appourchaux, T. and Dachwald, Bernd and Finsterle, W. and Gizon, L. and Liewer, P. C. and McInnes, Colin R. and Mengali, G. and Seboldt, W. and Sekii, T. and Solanki, S. K. and Velli, M. and Wimmer-Schweingruber, R. F. and Spietz, Peter and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a solar polar mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, editor = {Macdonald, Malcolm}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-642-34906-5}, doi = {10.1007/978-3-642-34907-2_17}, pages = {243 -- 257}, year = {2014}, abstract = {A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100-125 m to deliver a 'sufficient value' minimum science payload, and that a 2.5 μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass.}, language = {en} }