@inproceedings{StaatHeitzerHicken1998, author = {Staat, Manfred and Heitzer, M. and Hicken, E. F.}, title = {LISA, ein europ{\"a}isches Projekt zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen}, year = {1998}, abstract = {Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der Plastizit{\"a}t, die neben ausreichender Verformbarkeit keine einschr{\"a}nkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle f{\"u}r Details der Lastgeschichte und des Stoffverhaltens. Anders als die klassische Behandlung nichtlinearer Probleme der Strukturmechanik f{\"u}hrt die Methode auf Optimierungsprobleme. Diese sind bei realistischen FEM-Modellen sehr groß. Das hat die industrielle Anwendung der Traglast- und Einspielanalysen stark verz{\"o}gert. Diese Situation wird durch das Brite-EuRam Projekt LISA grundlegend ge{\"a}ndert. Die Autoren m{\"o}chten der Europ{\"a}ischen Kommission an dieser Stelle f{\"u}r die F{\"o}rderung ausdr{\"u}cklich danken. In LISA entsteht auf der Basis des industriellen FEM-Programms PERMAS ein Verfahren zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen. Damit kann der Betriebsbereich von Komponenten und Bauwerken auf den plastischen Bereich erweitert werden, ohne den Aufwand gegen{\"u}ber elastischen Analysen wesentlich zu erh{\"o}hen. Die beachtlichen Rechenzeitgewinne erlauben Parameterstudien und die Berechnung von Interaktionsdiagrammen, die einen schnellen {\"U}berblick {\"u}ber m{\"o}gliche Betriebsbereiche vermitteln. Es zeigt sich, daß abh{\"a}ngig von der Komponente und ihren Belastungen teilweise entscheidende Sicherheitsgewinne zur Erweiterung der Betriebsbereiche erzielt werden k{\"o}nnen. Das Vorgehen erfordert vom Anwender oft ein gewisses Umdenken. Es werden keine Spannungen berechnet, um damit Sicherheit und Lebensdauer zu interpretieren. Statt dessen berechnet man direkt die gesuchte Sicherheit. Der Post-Prozessor wird nur noch zur Modell- und Rechenkontrolle ben{\"o}tigt. Das Vorgehen ist {\"a}nhlich der Stabilit{\"a}tsanalyse (Knicken, Beulen). Durch namhafte industrielle Projektpartner werden Validierung und die Anwendbarkeit auf eine breite Palette technischer Probleme garantiert. Die ebenfalls in LISA geplante Zuverl{\"a}ssigkeitsanalyse ist erst auf der Basis direkter Verfahren effektiv m{\"o}glich. Ohne Traglast- und Einspielanalyse ist plastische Strukturoptimierung auch heute kaum durchf{\"u}hrbar.}, subject = {Finite-Elemente-Methode}, language = {de} } @techreport{HagemannCardinalGartzenetal.1998, author = {Hagemann, Hans-J{\"u}rgen and Cardinal, Peter and Gartzen, Johannes and K{\"o}hler, Bernd and Petschke, U. and Reißmann, G{\"u}nter}, title = {Laser-Mikrostrukturierung von BaTiO3 Gr{\"u}nfolien und Keramiken : Abschlußbericht ; gef{\"o}rdert mit Mitteln aud dem Programm "Anwendungsorientierte Forschung und Entwicklung an Fachhochschulen" des Bundesministeriums f{\"u}r Bildung, Wissenschaft, Forschung}, year = {1998}, abstract = {An BaTiO3 Keramik als Modellsubstanz und mit Nd:YAG- und Excimer-Lasern wurde die Mikrostrukturierung von Gr{\"u}nk{\"o}rperpreßlingen, deren Schrumpfungsverhalten beim Sintern und die Mikrostrukturierung von gesinterten Keramiken untersucht. F{\"u}r die bessere Vergleichbarkeit wurden alle keramischen Folien, Preßlinge und Sinterwerkstoffe im Rahmen des Projektes hergestellt. Die Nd:YAG Laserbearbeitung erfolgte mit einem Rasterverfahren, bei dem der fokussierte Strahl mit Hilfe eines Scanners und eines Umlenkspiegels entlang der Bearbeitungskontur gef{\"u}hrt wurde. Bei der Excimer Laserbearbeitung wurden die Strukturen ohne Relativbewegung zwischen Strahlquelle und Bearbeitungsobjekt durch die Abbildung einer Maske erzeugt. Mit dem Nd:YAG Laser (Wellenl{\"a}nge 1,06 µ m) war eine abtragende Bearbeitung nur bei den Gr{\"u}nk{\"o}rpern, nicht aber bei den gesinterten Keramiken m{\"o}glich. Mit dem Excimer Laser (Wellenl{\"a}nge 248 nm) konnten dagegen sowohl Gr{\"u}nk{\"o}rper als auch gesinterte Keramiken strukturiert werden. Wenn die Genauigkeitsanforderungen nicht unter ± 10 µm liegen, die Bearbeitungskonturen m{\"o}glichst geradlinig sind und der Anteil der zu bearbeitenden Fl{\"a}che klein ist, kann mit Nd:YAG-Lasern eine effiziente Mikrostukturierung von keramischen Gr{\"u}nk{\"o}rpern durchgef{\"u}hrt werden. Strukturierte Gr{\"u}nk{\"o}rper k{\"o}nnen reproduzierbar und unverzerrt zu keramischen Bauteilen gesintert werden. Mit Excimer-Lasern wird eine h{\"o}here Genauigkeit und Qualit{\"a}t bei der Bearbeitung von Gr{\"u}nk{\"o}rpern und Keramiken erreicht. Die Bearbeitungseffizienz l{\"a}sst sich durch eine hohe Pulswiederholfrequenz und durch die simultane Bearbeitung großer Fl{\"a}chen steigern. Das f{\"u}r Excimer-Laserstrahlung zweckm{\"a}ßige Abbildungsverfahren hat besondere Vorteile, wenn ein fl{\"a}chiger Abtrag mit komplexen Strukturen verwirklicht werden soll, wobei Toleranzen und Reproduzierbarkeiten von besser als ± 5 µm realisiert werden konnten. Die Mikrostrukturierung mit Excimer-Lasern ist an Gr{\"u}nk{\"o}rpern und an gebrannten Keramiken gleichermaßen m{\"o}glich. Die Abtragsraten liegen bei Gr{\"u}nk{\"o}rpern mit 0,2 µm pro Puls zwar um ca. 50\% h{\"o}her als bei Keramiken, es ist jedoch zweifelhaft, ob dieser Vorteil den gr{\"o}ßeren prozeßtechnischen Aufwand bei der Bearbeitung von Gr{\"u}nk{\"o}rpern rechtfertigen kann.}, subject = {Keramischer Werkstoff}, language = {de} }