@article{KirschnerHermannsKlementzHaselhuhnetal.2011, author = {Kirschner-Hermanns, Ruth and Klementz, T. and Haselhuhn, Angelika and Jakse, Gerhard and Heidenreich, A. and Brehmer, Bernhard}, title = {Drangsymptomatik nach onkologisch erfolgreicher Prostatakarzinomtherapie : prospektive Studie zum Einfluss von Therapiemodalit{\"a}t, Morbidit{\"a}t und epidemiologischen Faktoren auf die Lebensqualit{\"a}t}, series = {Der Urologe}, volume = {Vol. 50}, journal = {Der Urologe}, number = {Iss. 11}, publisher = {Springer}, address = {Berlin}, issn = {1433-0563}, pages = {1412 -- 1419}, year = {2011}, language = {de} } @article{KirschkampJoeckelWaehlischetal.1998, author = {Kirschkamp, T. and J{\"o}ckel, M. and W{\"a}hlisch, Georg and Barry, J. C.}, title = {Konstruktion eines Modellauges zur Simulation von Purkinje-Spiegelbildern f{\"u}r die Bestimmung der Kr{\"u}mmungsradien und der Lage der Augenlinse}, series = {Biomedizinische Technik = Biomedical Engineering}, volume = {Bd. 43}, journal = {Biomedizinische Technik = Biomedical Engineering}, number = {H. 11}, issn = {1862-278X (E-Journal); 0013-5585 (Print)}, pages = {318 -- 325}, year = {1998}, language = {de} } @article{KirschPiazzi2009, author = {Kirsch, Ansgar and Piazzi, Lukas}, title = {Numerical investigation of the effectiveness of a bored pile wall for the minimisation of settlement resulting from tunnel driving}, series = {Geomechanics and tunnelling}, volume = {Vol. 2}, journal = {Geomechanics and tunnelling}, number = {Iss. 6}, issn = {1865-7362}, doi = {10.1002/geot.200900063}, pages = {753 -- 765}, year = {2009}, language = {de} } @article{KirschKolymbas2005, author = {Kirsch, Ansgar and Kolymbas, Dimitrios}, title = {Theoretische Untersuchung zur Ortsbruststabilit{\"a}t}, series = {Bautechnik : Zeitschrift f{\"u}r den gesamten Ingenieurbau}, volume = {Bd. 82}, journal = {Bautechnik : Zeitschrift f{\"u}r den gesamten Ingenieurbau}, number = {H. 7}, issn = {1437-0999 (E-Journal); 0005-6820 (Print); 0932-8351 (Print)}, doi = {10.1002/bate.200590151}, pages = {449 -- 456}, year = {2005}, language = {de} } @article{Kirsch2010, author = {Kirsch, Ansgar}, title = {Experimental investigation of the face stability of shallow tunnels in sand}, series = {Acta Geotechnica}, volume = {5}, journal = {Acta Geotechnica}, number = {1}, publisher = {Springer}, address = {Berlin}, issn = {1861-1125}, doi = {10.1007/s11440-010-0110-7}, pages = {43 -- 62}, year = {2010}, abstract = {Various models have been proposed for the prediction of the necessary support pressure at the face of a shallow tunnel. To assess their quality, the collapse of a tunnel face was modelled with small-scale model tests at single gravity. The development of the failure mechanism and the support force at the face in dry sand were investigated. The observed displacement patterns show a negligible influence of overburden on the extent and evolution of the failure zone. The latter is significantly influenced, though, by the initial density of the sand: in dense sand a chimney-wedge-type collapse mechanism developed, which propagated towards the soil surface. Initially, loose sand did not show any discrete collapse mechanism. The necessary support force was neither influenced by the overburden nor the initial density. A comparison with quantitative predictions by several theoretical models showed that the measured necessary support pressure is overestimated by most of the models. Those by Vermeer/Ruse and L{\´e}ca/Dormieux showed the best agreement to the measurements.}, language = {en} } @article{Kirsch2008, author = {Kirsch, Ansgar}, title = {Experimentelle Untersuchung des Ortsbrustversagens seichter Tunnel}, series = {{\"O}sterreichische Bauwirtschaft}, journal = {{\"O}sterreichische Bauwirtschaft}, number = {Sondernr.}, pages = {6 -- 9}, year = {2008}, language = {de} } @article{KirchnerSpelthahnSchoeningetal.2010, author = {Kirchner, Patrick and Spelthahn, H. and Sch{\"o}ning, Michael Josef and Henkel, H. and Schneider, A. and Friedrich, P. and Kolstad, J. and Berger, J.}, title = {Realisierung eines Polyimid-basierten kalorimetrischen Gassensors zur Inline-{\"U}berwachung der H2O2-Konzentration in aseptischen Abf{\"u}llanlagen}, series = {Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vortr{\"a}ge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in N{\"u}rnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA)}, journal = {Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vortr{\"a}ge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in N{\"u}rnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA)}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-3260-9}, pages = {607 -- 612}, year = {2010}, language = {de} } @article{KirchnerReisertPuetzetal.2012, author = {Kirchner, Patrick and Reisert, Steffen and P{\"u}tz, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Characterisation of polymeric materials as passivation layer for calorimetric H2O2 gas sensors}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100773}, pages = {859 -- 863}, year = {2012}, abstract = {Calorimetric gas sensors for monitoring the H₂O₂ concentration at elevated temperatures in industrial sterilisation processes have been presented in previous works. These sensors are built up in form of a differential set-up of a catalytically active and passive temperature-sensitive structure. Although, various types of catalytically active dispersions have been studied, the passivation layer has to be established and therefore, chemically as well as physically characterised. In the present work, fluorinated ethylene propylene (FEP), perfluoralkoxy (PFA) and epoxy-based SU-8 photoresist as temperature-stable polymeric materials have been investigated for sensor passivation in terms of their chemical inertness against H₂O₂, their hygroscopic properties as well as their morphology. The polymeric materials were deposited via spin-coating on the temperature-sensitive structure, wherein spin-coated FEP and PFA show slight agglomerates. However, they possess a low absorption of humidity due to their hydrophobic surface, whereas the SU-8 layer has a closed surface but shows a slightly higher absorption of water. All of them were inert against gaseous H₂O₂ during the characterisation in H₂O₂ atmosphere that demonstrates their suitability as passivation layer for calorimetric H₂O₂ gas sensors.}, language = {en} } @article{KirchnerOberlaenderSusoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suso, Henri-Pierre and Rysstad, Gunnar and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes}, series = {Physica status solidi (a)}, volume = {210}, journal = {Physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200920}, pages = {877 -- 883}, year = {2013}, abstract = {A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests.}, language = {en} } @article{KirchnerOberlaenderSucoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suco, Henri-Pierre and Rysstad, Gunnar and Sch{\"o}ning, Michael Josef}, title = {Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor}, series = {Food control}, volume = {31}, journal = {Food control}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-7135}, doi = {10.1016/j.foodcont.2012.11.048}, pages = {530 -- 538}, year = {2013}, abstract = {In the present work, a novel method for monitoring sterilisation processes with gaseous H2O2 in combination with heat activation by means of a specially designed calorimetric gas sensor was evaluated. Therefore, the sterilisation process was extensively studied by using test specimens inoculated with Bacillus atrophaeus spores in order to identify the most influencing process factors on its microbicidal effectiveness. Besides the contact time of the test specimens with gaseous H2O2 varied between 0.2 and 0.5 s, the present H2O2 concentration in a range from 0 to 8\% v/v (volume percent) had a strong influence on the microbicidal effectiveness, whereas the change of the vaporiser temperature, gas flow and humidity were almost negligible. Furthermore, a calorimetric H2O2 gas sensor was characterised in the sterilisation process with gaseous H2O2 in a wide range of parameter settings, wherein the measurement signal has shown a linear response against the H2O2 concentration with a sensitivity of 4.75 °C/(\% v/v). In a final step, a correlation model by matching the measurement signal of the gas sensor with the microbial inactivation kinetics was established that demonstrates its suitability as an efficient method for validating the microbicidal effectiveness of sterilisation processes with gaseous H2O2.}, language = {en} }