@article{AbelKahmannMellonetal.2020, author = {Abel, Alexander and Kahmann, Stephanie Lucina and Mellon, Stephen and Staat, Manfred and Jung, Alexander}, title = {An open-source tool for the validation of finite element models using three-dimensional full-field measurements}, series = {Medical Engineering \& Physics}, volume = {77}, journal = {Medical Engineering \& Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, doi = {10.1016/j.medengphy.2019.10.015}, pages = {125 -- 129}, year = {2020}, abstract = {Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.}, language = {en} } @article{LimpertWiesenFerreinetal.2019, author = {Limpert, Nicolas and Wiesen, Patrick and Ferrein, Alexander and Kallweit, Stephan and Schiffer, Stefan}, title = {The ROSIN Project and its Outreach to South Africa}, series = {R\&D Journal}, volume = {35}, journal = {R\&D Journal}, pages = {1 -- 6}, year = {2019}, language = {en} } @article{Thomas2019, author = {Thomas, Axel}, title = {Die Wiederbelebung der Mitarbeiterwohnungsidee bei kommunalen Unternehmen}, series = {VM Verwaltung und Management}, volume = {25}, journal = {VM Verwaltung und Management}, number = {6}, publisher = {Nomos-Verl.-Ges.}, address = {Baden-Baden}, issn = {0947-9856}, doi = {10.5771/0947-9856-2019-6-286}, pages = {286 -- 291}, year = {2019}, language = {de} } @article{WilbringEnning2019, author = {Wilbring, Daniela and Enning, Manfred}, title = {Stromversorgung auf G{\"u}terwagen - Aktuelle Bem{\"u}hungen zur Standardisierung}, series = {ETR - Eisenbahntechnische Rundschau}, volume = {68}, journal = {ETR - Eisenbahntechnische Rundschau}, number = {11}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {64 -- 67}, year = {2019}, language = {de} } @article{FingerBilBraun2019, author = {Finger, Felix and Bil, Cees and Braun, Carsten}, title = {Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {2}, issn = {1533-3868}, doi = {10.2514/1.C035428}, pages = {245 -- 255}, year = {2019}, language = {en} } @article{RoethSlabuEngelmannetal.2017, author = {R{\"o}th, A.A. and Slabu, I. and Engelmann, Ulrich M. and Baumann, M. and Schmitz-Rode, T. and Neumann, U. P.}, title = {Targeting von gastroenterologischen Tumoren mittels magnetischer Nanopartikel zur hyperthermischen Therapie}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {55}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {8}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0037-1605124}, pages = {KV-384}, year = {2017}, language = {de} } @article{RoethSlabuKolvenbachetal.2015, author = {R{\"o}th, A. and Slabu, I. and Kolvenbach, K. and Engelmann, Ulrich M. and Baumann, M. and Schmitz-Rode, T. and Trahms, L. and Neumann, U.}, title = {Aufnahmekinetik von magnetischen Nanopartikeln zur Tumortherapie in humanen Pankreaskarzinomzelllinien}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {53}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {8}, publisher = {Thieme}, address = {Stuttgart}, issn = {1439-7803}, doi = {10.1055/s-0035-1559529}, pages = {KC139}, year = {2015}, language = {de} } @article{ChenJostVolkeretal.2017, author = {Chen, Chao and Jost, Peter and Volker, Hanno and Kaminski, Marvin and Wirtssohn, Matti R. and Engelmann, Ulrich M. and Kr{\"u}ger, K. and Schlich, Franziska F. and Schlockermann, Carl and Lobo, Ricardo P.S.M. and Wuttig, Matthias}, title = {Dielectric properties of amorphous phase-change materials}, series = {Physical Review B}, volume = {95}, journal = {Physical Review B}, number = {9}, issn = {2469-9950}, doi = {10.1103/PhysRevB.95.094111}, pages = {Article number 094111}, year = {2017}, language = {en} } @article{EngelmannBuhlBaumannetal.2017, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Baumann, Martin and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia}, series = {Current Directions in Biomedical Engineering}, volume = {3}, journal = {Current Directions in Biomedical Engineering}, number = {2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2017-0096}, pages = {457 -- 460}, year = {2017}, language = {en} } @article{EngelmannBuhlDraacketal.2018, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Draack, Sebastian and Viereck, Thilo and Frank, and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications}, series = {IEEE Magnetic Letters}, volume = {9}, journal = {IEEE Magnetic Letters}, number = {Article number 8519617}, publisher = {IEEE}, address = {New York, NY}, issn = {1949-307X}, doi = {10.1109/LMAG.2018.2879034}, year = {2018}, abstract = {Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23\% for agglomerated MNP in suspension and a decrease by up to 28\% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy.}, language = {en} }