@article{LyonsMikuckiGermanetal.2019, author = {Lyons, W. Berry and Mikucki, Jill A. and German, Laura A. and Welch, Kathleen A. and Welch, Susan A. and Gardener, Christopher B. and Tulaczyk, Slawek M. and Pettit, Erin C. and Kowalski, Julia and Dachwald, Bernd}, title = {The Geochemistry of Englacial Brine from Taylor Glacier, Antarctica}, series = {Journal of Geophysical Research: Biogeosciences}, journal = {Journal of Geophysical Research: Biogeosciences}, publisher = {Wiley}, address = {Hoboken}, issn = {2169-8961}, doi = {10.1029/2018JG004411}, year = {2019}, language = {en} } @article{FunkeBeckmannAbanteriba2019, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications}, series = {International Journal of Hydrogen Energy}, volume = {44}, journal = {International Journal of Hydrogen Energy}, number = {13}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2019.01.161}, pages = {6978 -- 6990}, year = {2019}, language = {en} } @article{BreuerPilasGuthmannetal.2019, author = {Breuer, Lars and Pilas, Johanna and Guthmann, Eric and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Towards light-addressable flow control: responsive hydrogels with incorporated graphene oxide as laser-driven actuator structures within microfluidic channels}, series = {Sensor and Actuators B: Chemical}, volume = {288}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2019.02.086}, pages = {579 -- 585}, year = {2019}, language = {en} } @article{JungMuellerStaat2019, author = {Jung, Alexander and M{\"u}ller, Wolfram and Staat, Manfred}, title = {Optimization of the flight technique in ski jumping: the influence of wind}, number = {Early view}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.jbiomech.2019.03.023}, year = {2019}, language = {en} } @article{KlubertMalechaSparla2018, author = {Klubert, Joachim and Malecha, Hartmut and Sparla, Peter}, title = {Modernisierung der geod{\"a}tischen Messtechnik der Urfttalsperre}, series = {Wasserwirtschaft}, volume = {108}, journal = {Wasserwirtschaft}, number = {10}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0043-0978}, pages = {14 -- 18}, year = {2018}, language = {de} } @article{ScheerHendersonKapelyukhetal.2019, author = {Scheer, Nico and Henderson, Colin James and Kapelyukh, Yury and Rode, Anja and Mclaren, Aileen W. and MacLeod, Alastair Kenneth and Lin, De and Wright, Jayne and Stanley, Lesley and Wolf, C. Roland}, title = {An extensively humanised mouse model to predict pathways of drug disposition, drug/drug interactions, and to facilitate the design of clinical trials}, series = {Drug Metabolism and Disposition}, journal = {Drug Metabolism and Disposition}, number = {Early view}, doi = {10.1124/dmd.119.086397}, pages = {69 Seiten}, year = {2019}, language = {en} } @article{JanThimoBauerBieleetal.2019, author = {Jan Thimo, Grundmann and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} } @article{SalpatiChuChenetal.2014, author = {Salpati, Laurent and Chu, Xiaoyan and Chen, Liangfu and Prasad, Bhagwat and Dallas, Shannon and Evers, Raymond and Mamaril-Fishman, Donna and Geier, Ethan G. and Kehler, Jonathan and Kunta, Jeevan and Mezler, Mario and Laplanche, Loic and Pang, Jodie and Soars, Matthew G. and Unadkat, Jashvant D. and van Waterschoot, Robert A.B. and Yabut, Jocelyn and Schinkel, Alfred H. and Scheer, Nico and Rode, Anja}, title = {Evaluation of organic anion transporting polypeptide 1B1 and 1B3 humanized mice as a translational model to study the pharmacokinetics of statins}, series = {Drug Metabolism and Disposition}, volume = {42}, journal = {Drug Metabolism and Disposition}, number = {8}, publisher = {ASPET}, address = {Bethesda, Md.}, issn = {1521-009X}, doi = {10.1124/dmd.114.057976}, pages = {1301 -- 1313}, year = {2014}, abstract = {Organic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography-tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins. Major outcomes from these studies were 1) mostly moderate compensatory changes in only a few genes involved in drug metabolism and disposition, 2) a robust hepatic expression of OATP1B1 and -1B3 proteins in the respective humanized mouse models, and 3) functional activities of the human transporters in hepatocytes isolated from the humanized models with several substrates tested in vitro and with pravastatin in vivo. However, the expression of OATP1B1 and -1B3 in the humanized models did not significantly alter liver or plasma concentrations of rosuvastatin and pitavastatin compared with Oatp1a/1b knockout controls under the conditions used in our studies. Hence, although the humanized OATP1B1 and -1B3 mice showed in vitro and/or in vivo functional activity with some statins, further characterization of these models is required to define their potential use and limitations in the prediction of drug disposition and drug-drug interactions in humans.}, language = {en} } @article{LuisierLempiaeinenScherbichleretal.2014, author = {Luisier, Rapha{\"e}lle and Lempi{\"a}inen, Harri and Scherbichler, Nina and Braeuning, Albert and Geissler, Miriam and Dubost, Valerie and M{\"u}ller, Arne and Scheer, Nico and Chibout, Salah-Dine and Hara, Hisanori and Picard, Frank and Theil, Diethilde and Couttet, Philippe and Vitobello, Antonio and Grenet, Olivier and Grasl-Kraupp, Bettina and Ellinger-Ziegelbauer, Heidrung and Thomson, John P. and Meehan, Richard R. and Elcombe, Clifford R. and Henderson, Colin J. and Wolf, C. Roland and Schwarz, Michael and Moulin, Pierre and Terranova, Remi and Moggs, Jonathan G.}, title = {Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors}, series = {Toxicological Sciences}, volume = {139}, journal = {Toxicological Sciences}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1094-2025}, doi = {https://doi.org/10.1093/toxsci/kfu038}, pages = {501 -- 511}, year = {2014}, abstract = {The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CARᴷᴼ-PXRᴷᴼ), double humanized CAR and PXR (CARʰ-PXRʰ), and wild-type C57BL/6 mice. Wild-type and CARʰ-PXRʰ mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CARᴷᴼ-PXRᴷᴼ mouse livers and largely reversible in wild-type and CARʰ-PXRʰ mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CARʰ-PXRʰ mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.}, language = {en} } @article{HendersonMclaughlinScheeretal.2015, author = {Henderson, Colin J. and Mclaughlin, Lesley A. and Scheer, Nico and Stanley, Lesley A. and Wolf, C. Roland}, title = {Cytochrome b5 Is a Major Determinant of Human Cytochrome P450 CYP2D6 and CYP3A4 Activity In Vivo s}, series = {Molecular Pharmacology}, volume = {87}, journal = {Molecular Pharmacology}, number = {4}, publisher = {ASPET}, address = {Bethesda}, issn = {1521-0111}, doi = {10.1124/mol.114.097394}, pages = {733 -- 739}, year = {2015}, language = {en} }