@article{TeumerCapitainRossJonesetal.2018, author = {Teumer, T. and Capitain, C. and Ross-Jones, J. and Tippk{\"o}tter, Nils and R{\"a}dle, M. and Methner, F.-J.}, title = {In-line Haze Monitoring Using a Spectrally Resolved Back Scattering Sensor}, series = {BrewingScience}, volume = {71}, journal = {BrewingScience}, number = {5/6}, publisher = {Fachverlag Hans Carl}, address = {N{\"u}rnberg}, issn = {1613-2041}, pages = {49 -- 55}, year = {2018}, abstract = {In the present work an optical sensor in combination with a spectrally resolved detection device for in-line particle-size-monitoring for quality control in beer production is presented. The principle relies on the size and wavelength dependent backscatter of growing particles in fluids. Measured interference structures of backscattered light are compared with calculated theoretical values, based on Mie-Theory, and fitted with a linear least square method to obtain particle size distributions. For this purpose, a broadband light source in combination with a process-CCD-spectrometer (charge ? coupled device spectrometer) and process adapted fiber optics are used. The goal is the development of an easy and flexible measurement device for in-line-monitoring of particle size. The presented device can be directly installed in product fill tubes or vessels, follows CIP- (cleaning in place) and removes the need of sample taking. A proof of concept and preliminary results, measuring protein precipitation, are presented.}, language = {en} } @article{KerresSiekmann2017, author = {Kerres, Karsten and Siekmann, Marko}, title = {Wie kommuniziere ich prognosegest{\"u}tzte Instandhaltungsstrategien erfolgreich in politischen Entscheidungsgremien?}, series = {3 R. Fachzeitschrift f{\"u}r sichere und effiziente Rohleitungssysteme}, journal = {3 R. Fachzeitschrift f{\"u}r sichere und effiziente Rohleitungssysteme}, number = {12}, publisher = {Vulkan-Verl.}, address = {Essen}, issn = {2191-9798}, pages = {47 -- 51}, year = {2017}, language = {de} } @article{MichauxMatternKallweit2018, author = {Michaux, F. and Mattern, P. and Kallweit, Stephan}, title = {RoboPIV: how robotics enable PIV on a large industrial scale}, series = {Measurement Science and Technology}, volume = {29}, journal = {Measurement Science and Technology}, number = {7}, publisher = {IOP}, address = {Bristol}, issn = {1361-6501}, doi = {10.1088/1361-6501/aab5c1}, pages = {074009}, year = {2018}, abstract = {This work demonstrates how the interaction between particle image velocimetry (PIV) and robotics can massively increase measurement efficiency. The interdisciplinary approach is shown using the complex example of an automated, large scale, industrial environment: a typical automotive wind tunnel application. Both the high degree of flexibility in choosing the measurement region and the complete automation of stereo PIV measurements are presented. The setup consists of a combination of three robots, individually used as a 6D traversing unit for the laser illumination system as well as for each of the two cameras. Synchronised movements in the same reference frame are realised through a master-slave setup with a single interface to the user. By integrating the interface into the standard wind tunnel management system, a single measurement plane or a predefined sequence of several planes can be requested through a single trigger event, providing the resulting vector fields within minutes. In this paper, a brief overview on the demands of large scale industrial PIV and the existing solutions is given. Afterwards, the concept of RoboPIV is introduced as a new approach. In a first step, the usability of a selection of commercially available robot arms is analysed. The challenges of pose uncertainty and importance of absolute accuracy are demonstrated through comparative measurements, explaining the individual pros and cons of the analysed systems. Subsequently, the advantage of integrating RoboPIV directly into the existing wind tunnel management system is shown on basis of a typical measurement sequence. In a final step, a practical measurement procedure, including post-processing, is given by using real data and results. Ultimately, the benefits of high automation are demonstrated, leading to a drastic reduction in necessary measurement time compared to non-automated systems, thus massively increasing the efficiency of PIV measurements.}, language = {en} } @article{WeldenSchejaSchoeningetal.2018, author = {Welden, Rene and Scheja, Sabrina and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Wagner, Torsten}, title = {Electrochemical Evaluation of Light-Addressable Electrodes Based on TiO2 for the Integration in Lab-on-Chip Systems}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800150}, pages = {Article number 1800150}, year = {2018}, abstract = {In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol-gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated.}, language = {en} } @article{FunkeBeckmannKeinzetal.2018, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {140}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {8}, publisher = {ASME}, address = {New York, NY}, issn = {0742-4795}, doi = {10.1115/1.4038882}, pages = {9 Seiten}, year = {2018}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry.}, language = {en} } @article{MolinnusHardtKaeveretal.2018, author = {Molinnus, Denise and Hardt, G. and K{\"a}ver, L. and Willenberg, H.S. and Kr{\"o}ger, J.-C. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling}, series = {Sensor and Actuators B: Chemical}, volume = {272}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.05.136}, pages = {21 -- 27}, year = {2018}, abstract = {A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician.}, language = {en} } @article{DantismRoehlenWagneretal.2018, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800058}, pages = {Article number 1800058}, year = {2018}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron-hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode.}, language = {en} } @article{PilasYaziciSelmeretal.2018, author = {Pilas, Johanna and Yazici, Y. and Selmer, Thorsten and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Application of a portable multi-analyte biosensor for organic acid determination in silage}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18051470}, pages = {12 Seiten}, year = {2018}, abstract = {Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at -21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at -21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.}, language = {en} } @article{ValeroBungCrookston2018, author = {Valero, Daniel and Bung, Daniel B. and Crookston, B.M.}, title = {Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001482}, year = {2018}, abstract = {New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin's performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein.}, language = {en} } @article{ValeroBung2018, author = {Valero, Daniel and Bung, Daniel B.}, title = {Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001485}, year = {2018}, abstract = {A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative.}, language = {en} }