@book{Timme2020, author = {Timme, Michael}, title = {WEG - Wohnungeigentumsgesetz / Hrsg. von Michael Timme . Stand: 01.05.2020 ; Edition 41}, publisher = {Beck}, address = {M{\"u}nchen}, year = {2020}, language = {de} } @inproceedings{TomicPennaDeJongetal.2020, author = {Tomic, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Blind predictions of shake table testing of aggregate masonry buildings}, series = {Proceedings of the 17th World Conference on Earthquake Engineering}, booktitle = {Proceedings of the 17th World Conference on Earthquake Engineering}, year = {2020}, abstract = {In many historical centers in Europe, stone masonry is part of building aggregates, which developed when the layout of the city or village was densified. The analysis of such building aggregates is very challenging and modelling guidelines missing. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The SERA project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures) provides such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. With the aim to advance the modelling of unreinforced masonry aggregates, a blind prediction competition is organized before the experimental campaign. Each group has been provided a complete set of construction drawings, material properties, testing sequence and the list of measurements to be reported. The applied modelling approaches span from equivalent frame models to Finite Element models using shell elements and discrete element models with solid elements. This paper compares the first entries, regarding the modelling approaches, results in terms of base shear, roof displacements, interface openings, and the failure modes.}, language = {en} } @inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} } @article{TranStaat2020, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under lognormally distributed strength by chance constrained programming}, series = {Optimization and Engineering}, volume = {21}, journal = {Optimization and Engineering}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-2924}, doi = {10.1007/s11081-019-09437-2}, pages = {131 -- 157}, year = {2020}, abstract = {We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.}, language = {en} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Simulation und Verifikation komplexer Handarbeitsprozesse durch die Kombination von Virtual Reality und Augmented Reality im Single-Piece-Workflow}, series = {Tagungsband: AALE 2020}, booktitle = {Tagungsband: AALE 2020}, isbn = {978-3-8007-5180-8}, pages = {4 Seiten}, year = {2020}, language = {de} } @article{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Human-Centered Gamification Framework for Manufacturing Systems}, series = {Procedia CIRP}, volume = {93}, journal = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2020.04.076}, pages = {670 -- 675}, year = {2020}, abstract = {While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees' engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown.}, language = {en} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamified Virtual Reality Training Environment for the Manufacturing Industry}, series = {Proceedings of the 2020 19th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {Proceedings of the 2020 19th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ME49197.2020.9286661}, pages = {1 -- 6}, year = {2020}, abstract = {Industry 4.0 imposes many challenges for manufacturing companies and their employees. Innovative and effective training strategies are required to cope with fast-changing production environments and new manufacturing technologies. Virtual Reality (VR) offers new ways of on-the-job, on-demand, and off-premise training. A novel concept and evaluation system combining Gamification and VR practice for flexible assembly tasks is proposed in this paper and compared to existing works. It is based on directed acyclic graphs and a leveling system. The concept enables a learning speed which is adjustable to the users' pace and dynamics, while the evaluation system facilitates adaptive work sequences and allows employee-specific task fulfillment. The concept was implemented and analyzed in the Industry 4.0 model factory at FH Aachen for mechanical assembly jobs.}, language = {de} } @article{UlmerGroeningerBraunetal.2020, author = {Ulmer, Jessica and Gr{\"o}ninger, Marc and Braun, Sebastian and Wollert, J{\"o}rg}, title = {AR Arbeitspl{\"a}tze: F{\"u}r hochflexible und skalierbare Produktionsumgebungen}, series = {atp Magazin}, volume = {62}, journal = {atp Magazin}, number = {10}, publisher = {Vulkan-Verlag}, address = {Essen}, issn = {2364-3137}, doi = {10.17560/atp.v62i10.2495}, year = {2020}, abstract = {Trotz fortschreitender Automatisierung bleiben manuelle T{\"a}tigkeiten ein wichtiger Baustein der Fertigung kundenindividueller Produkte. Um die Mitarbeiter(innen) zu unterst{\"u}tzen und um eine effiziente Arbeit zu erm{\"o}glichen, werden zunehmend auf Augmented Reality (AR) basierende Systeme eingesetzt. Die vorgestellte Arbeit konzentriert sich auf die Entwicklung ganzheitlicher AR-Arbeitspl{\"a}tze f{\"u}r den Einsatz in kleinen und mittleren Unternehmen (KMU). Das entwickelte AR- Handarbeitskonzept beinhaltet eine Just-in-time-Darstellung der Arbeitsaufgaben auf Werkst{\"u}cken mit automatisierter Fertigungskontrolle. Als Reaktion auf kurze Produktlebenszyklen und hohe Produktvielfalten sind alle Komponenten auf maximale Flexibilit{\"a}t ausgelegt. Ein Umr{\"u}sten auf neue Produkte kann innerhalb von Minuten erfolgen.}, language = {de} } @inproceedings{UlmerWollertChengetal.2020, author = {Ulmer, Jessica and Wollert, J{\"o}rg and Cheng, C. and Dowey, S.}, title = {Enterprise Gamification f{\"u}r produzierende mittelst{\"a}ndische Unternehmen}, series = {Automation 2020 : Shaping Automation for our Future}, booktitle = {Automation 2020 : Shaping Automation for our Future}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092375-8}, doi = {10.51202/9783181023754-157}, pages = {157 -- 165}, year = {2020}, abstract = {Die fortschreitende Digitalisierung und Globalisierung fordert von den Unternehmen eine erh{\"o}hte Flexibilit{\"a}t und Anpassungsf{\"a}higkeit. Um dies zu erreichen, sind qualifizierte und engagierte Mitarbeiter/-innen unabdingbar. Gamification bietet die M{\"o}glichkeit, Besch{\"a}ftigte individuell in ihren T{\"a}tigkeiten zu unterst{\"u}tzen und mittels Feedbackmechanismen zu motivieren. In dieser Arbeit wird ein Gamification Konzept bestehend aus einem intelligenten Arbeitsplatz, einer Wissensdatenbank und einer Gamification Plattform vorgestellt, welches an bestehende Produktionsumgebungen adaptiert werden kann. Das Konzept wird am Beispiel der Longboardproduktion in der Industrie 4.0 Modellfabrik der FH Aachen implementiert und evaluiert.}, language = {de} } @article{ValeroChansonBung2020, author = {Valero, Daniel and Chanson, Hubert and Bung, Daniel Bernhard}, title = {Robust estimators for free surface turbulence characterization: A stepped spillway application}, series = {Flow Measurement and Instrumentation}, volume = {76}, journal = {Flow Measurement and Instrumentation}, number = {Art. 101809}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0955-5986}, doi = {10.1016/j.flowmeasinst.2020.101809}, year = {2020}, abstract = {Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the variables' probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spectrum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that comparable robustness can be obtained either using classic estimators together with an intermediate filtering technique or using robust estimators instead, without any filtering technique.}, language = {en} }