@inproceedings{StarkBartelDitscheetal.2023, author = {Stark, Ralf and Bartel, Sebastian and Ditsche, Florian and Esch, Thomas}, title = {Design study of a 30kN LOX/LCH4 aerospike rocket engine for lunar lander application}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {9 Seiten}, year = {2023}, abstract = {Based on lunar lander concept EL3, various LOX/CH4 aerospike engines were studied. A distinction was made between single and cluster configurations as well as ideal and non-ideal contour concepts. It could be shown that non-ideal aerospike engines promise a significant payload gain.}, language = {en} } @inproceedings{StarkRiepingEsch2023, author = {Stark, Ralf and Rieping, Carla and Esch, Thomas}, title = {The impact of guide tubes on flow separation in rocket nozzles}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {8 Seiten}, year = {2023}, abstract = {Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters.}, language = {en} } @article{SchopenNarayanBeckmannetal.2024, author = {Schopen, Oliver and Narayan, Sriram and Beckmann, Marvin and Najmi, Aezid-Ul-Hassan and Esch, Thomas and Shabani, Bahman}, title = {An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method}, series = {International Journal of Hydrogen Energy}, volume = {58}, journal = {International Journal of Hydrogen Energy}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0360-3199 (print)}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2024.01.218}, pages = {1302 -- 1315}, year = {2024}, abstract = {In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 \% and the cathode side charge transfer resistance decreases by 23 \% after increasing the humidity from 30 \% to 85 \%, while the results of static operation also show an increase of ∼2.2 \% in the voltage output after increasing the relative humidity from 30 \% to 85 \%. In dynamic operation, visible drying effects occur at < 50 \% relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators.}, language = {en} } @misc{MachadoDahmannKeimeretal.2020, author = {Machado, Patricia Almeida and Dahmann, Peter and Keimer, Jona and Saretzki, Charlotte and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Stress profile and individual workload monitoring in general aviation pilots - an experiment's setting}, series = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, journal = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, doi = {10.55225/hppa.156}, year = {2020}, language = {en} } @inproceedings{LangohrBungCrookston2022, author = {Langohr, Philipp and Bung, Daniel Bernhard and Crookston, Brian M.}, title = {Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation}, series = {Proceedings of the 39th IAHR World Congress}, booktitle = {Proceedings of the 39th IAHR World Congress}, editor = {Ortega-S{\´a}nchez, Miguel}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-832612-1-8}, issn = {2521-7119 (print)}, doi = {10.3850/IAHR-39WC252171192022738}, pages = {2313 -- 2318}, year = {2022}, abstract = {The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs.}, language = {en} } @inproceedings{CrookstonBung2022, author = {Crookston, Brian M. and Bung, Daniel Bernhard}, title = {Application of RGB-D cameras in hydraulic laboratory studies}, series = {Proceedings of the 39th IAHR World Congress}, booktitle = {Proceedings of the 39th IAHR World Congress}, editor = {Ortega-S{\´a}nchez, Miguel}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-832612-1-8}, issn = {2521-7119 (print)}, doi = {10.3850/IAHR-39WC252171192022964}, pages = {5127 -- 5133}, year = {2022}, abstract = {Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors' experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes.}, language = {en} } @inproceedings{HuelsenMulsowDabrowskietal.2023, author = {H{\"u}lsen, Benjamin and Mulsow, Niklas A. and Dabrowski, Adam and Brinkmann, Wiebke and G{\"u}tzlaff, Joel and Spies, Leon and Czupalla, Markus and Kirchner, Frank}, title = {Towards an autonomous micro rover with night survivability for lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, pages = {12 Seiten}, year = {2023}, abstract = {In Europe, efforts are underway to develop key technologies that can be used to explore the Moon and to exploit the resources available. This includes technologies for in-situ resource utilization (ISRU), facilitating the possibility of a future Moon Village. The Moon is the next step for humans and robots to exploit the use of available resources for longer term missions, but also for further exploration of the solar system. A challenge for effective exploration missions is to achieve a compact and lightweight robot to reduce launch costs and open up the possibility of secondary payload options. Current micro rover concepts are primarily designed to last for one day of solar illumination and show a low level of autonomy. Extending the lifetime of the system by enabling survival of the lunar night and implementing a high level of autonomy will significantly increase potential mission applications and the operational range. As a reference mission, the deployment of a micro rover in the equatorial region of the Moon is being considered. An overview of mission parameters and a detailed example mission sequence is given in this paper. The mission parameters are based on an in-depth study of current space agency roadmaps, scientific goals, and upcoming flight opportunities. Furthermore, concepts of the ongoing international micro rover developments are analyzed along with technology solutions identified for survival of lunar nights and a high system autonomy. The results provide a basis of a concise requirements set-up to allow dedicated system developments and qualification measures in the future.}, language = {en} } @inproceedings{MulsowHuelsenGuetzlaffetal.2023, author = {Mulsow, Niklas A. and H{\"u}lsen, Benjamin and G{\"u}tzlaff, Joel and Spies, Leon and Bresser, Andreas and Dabrowski, Adam and Czupalla, Markus and Kirchner, Frank}, title = {Concept and design of an autonomous micro rover for long term lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, address = {Saarbr{\"u}cken}, pages = {13 Seiten}, year = {2023}, abstract = {Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power.}, language = {en} } @unpublished{SchmuellingGuetzlaffCzupalla2024, author = {Schm{\"u}lling, Max and G{\"u}tzlaff, Joel and Czupalla, Markus}, title = {A thermal simulation environment for moving objects on the lunar surface}, doi = {10.21203/rs.3.rs-3902363/v1}, pages = {12 Seiten}, year = {2024}, abstract = {This paper presents a thermal simulation environment for moving objects on the lunar surface. The goal of the thermal simulation environment is to enable the reliable prediction of the temperature development of a given object on the lunar surface by providing the respective heat fluxes for a mission on a given travel path. The user can import any object geometry and freely define the path that the object should travel. Using the path of the object, the relevant lunar surface geometry is imported from a digital elevation model. The relevant parts of the lunar surface are determined based on distance to the defined path. A thermal model of these surface sections is generated, consisting of a porous layer on top and a denser layer below. The object is moved across the lunar surface, and its inclination is adapted depending on the slope of the terrain below it. Finally, a transient thermal analysis of the object and its environment is performed at several positions on its path and the results are visualized. The paper introduces details on the thermal modeling of the lunar surface, as well as its verification. Furthermore, the structure of the created software is presented. The robustness of the environment is verified with the help of sensitivity studies and possible improvements are presented.}, language = {en} } @inproceedings{KohlbergerWildKasperetal.2021, author = {Kohlberger, David-Sharif and Wild, Dominik and Kasper, Stefan and Czupalla, Markus}, title = {Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method}, series = {ICES202: Satellite, Payload, and Instrument Thermal Control}, booktitle = {ICES202: Satellite, Payload, and Instrument Thermal Control}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated.}, language = {en} }