@inproceedings{GrundmannBorellaCeriottietal.2021, author = {Grundmann, Jan Thimo and Borella, Laura and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Fexer, Sebastian and Grimm, Christian D. and Hendrikse, Jeffrey and Herč{\´i}k, David and Herique, Alain and Hillebrandt, Martin and Ho, Tra-Mi and Kesseler, Lars and Laabs, Martin and Lange, Caroline and Lange, Michael and Lichtenheldt, Roy and McInnes, Colin R. and Moore, Iain and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Seefeldt, Patric and Venditti, Flaviane c. F. and Vergaaij, Merel and Viavattene, Giulia and Virkki, Anne K. and Zander, Martin}, title = {More bucks for the bang: new space solutions, impact tourism and one unique science \& engineering opportunity at T-6 months and counting}, series = {7th IAA Planetary Defense Conference}, booktitle = {7th IAA Planetary Defense Conference}, year = {2021}, abstract = {For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!), asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5\%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness), would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13\% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fast-paced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science.}, language = {en} } @inproceedings{SchoutetensDachwaldHeiligers2021, author = {Schoutetens, Frederic and Dachwald, Bernd and Heiligers, Jeannette}, title = {Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol}, series = {8th ICATT 2021}, booktitle = {8th ICATT 2021}, pages = {1 -- 15}, year = {2021}, abstract = {With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission's scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30\% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system.}, language = {en} } @inproceedings{SchmidtKaschEichleretal.2021, author = {Schmidt, Thomas and Kasch, Susanne and Eichler, Fabian and Thurn, Laura}, title = {Process strategies on laser-based melting of glass powder}, series = {LiM 2021 proceedings}, booktitle = {LiM 2021 proceedings}, pages = {10 Seiten}, year = {2021}, abstract = {This paper presents the laser-based powder bed fusion (L-PBF) using various glass powders (borosilicate and quartz glass). Compared to metals, these require adapted process strategies. First, the glass powders were characterized with regard to their material properties and their processability in the powder bed. This was followed by investigations of the melting behavior of the glass powders with different laser wavelengths (10.6 µm, 1070 nm). In particular, the experimental setup of a CO2 laser was adapted for the processing of glass powder. An experimental setup with integrated coaxial temperature measurement/control and an inductively heatable build platform was created. This allowed the L-PBF process to be carried out at the transformation temperature of the glasses. Furthermore, the component's material quality was analyzed on three-dimensional test specimen with regard to porosity, roughness, density and geometrical accuracy in order to evaluate the developed L-PBF parameters and to open up possible applications.}, language = {en} } @inproceedings{HandschuhStollenwerkBorchert2021, author = {Handschuh, Nils and Stollenwerk, Dominik and Borchert, J{\"o}rg}, title = {Operation of thermal storage power plants under high renewable grid penetration}, series = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, booktitle = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-5651-3}, pages = {261 -- 265}, year = {2021}, abstract = {The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 \%) and one from 2020 with a high renewable energy penetration (51 \%) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020 increases by more than 25 \% compared to 2015.}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska and Kishimoto, Tsuyoshi and Okada, Koichi}, title = {Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions}, publisher = {ASME}, address = {New York, NY}, doi = {10.1115/GT2021-58926}, pages = {11 Seiten}, year = {2021}, abstract = {The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration.}, language = {en} } @inproceedings{HorikawaOkadaYamaguchietal.2021, author = {Horikawa, Atsushi and Okada, Kunio and Yamaguchi, Masato and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-59666}, pages = {13 Seiten}, year = {2021}, abstract = {Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B\&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15\%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100\% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH\%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat.}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska}, title = {Numerical investigation of micromix hydrogen flames at different combustor pressure levels}, series = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, booktitle = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, doi = {10.1299/jsmeicope.2021.15.2021-0237}, pages = {4 Seiten}, year = {2021}, abstract = {This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range.}, language = {en} } @inproceedings{NikolovskiRekeElsenetal.2021, author = {Nikolovski, Gjorgji and Reke, Michael and Elsen, Ingo and Schiffer, Stefan}, title = {Machine learning based 3D object detection for navigation in unstructured environments}, series = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, booktitle = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, publisher = {IEEE}, isbn = {978-1-6654-7921-9}, doi = {10.1109/IVWorkshops54471.2021.9669218}, pages = {236 -- 242}, year = {2021}, abstract = {In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine.}, language = {en} } @inproceedings{EnglhardWeberArent2021, author = {Englhard, Markus and Weber, Tobias and Arent, Jan-Christoph}, title = {Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization}, series = {Proceedings of SAMPE Europe Conference 2021}, booktitle = {Proceedings of SAMPE Europe Conference 2021}, pages = {8 Seiten}, year = {2021}, abstract = {A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31\% using the proposed methodology.}, language = {en} } @inproceedings{PfeifferBalcGebhardt2021, author = {Pfeiffer, Johann and Balc, N. and Gebhardt, Andreas}, title = {Studie zur Untersuchung der Auswirkung von Fr{\"a}sbahnstrategien auf die Oberfl{\"a}chenqualit{\"a}t von mittels SLM gefertigten Metallteilen}, series = {Tagungsband 21. Nachwuchswissenschaftler*innenkonferenz}, booktitle = {Tagungsband 21. Nachwuchswissenschaftler*innenkonferenz}, publisher = {Verlag Ernst-Abbe-Hochschule Jena}, address = {Jena}, isbn = {978-3-932886-36-2}, pages = {99 -- 102}, year = {2021}, abstract = {F{\"u}r die Herstellung von metallischen Bauteilen wird in der heutigen Zeit eine Vielzahl von Verfahren auf dem Markt angeboten. Dabei stehen die additiven im Wettbewerb zu den konventionellen Verfahren. Die erreichbaren Oberfl{\"a}chenqualit{\"a}ten der additiven sind nicht mit denen spanender Verfahren vergleichbar. F{\"u}r diesen Beitrag wurde analysiert, ob sich ein mittels Selektivem Laserschmelzen (SLM) additiv hergestellter Edelstahl hinsichtlich seiner Oberfl{\"a}chenqualit{\"a}t nach der Zerspanung von einem umgeformten konventionell hergestellten Edelstahl gleicher Sorte unterscheidet.}, language = {de} }