@inproceedings{NikolovskiRekeElsenetal.2021, author = {Nikolovski, Gjorgji and Reke, Michael and Elsen, Ingo and Schiffer, Stefan}, title = {Machine learning based 3D object detection for navigation in unstructured environments}, series = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, booktitle = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, publisher = {IEEE}, isbn = {978-1-6654-7921-9}, doi = {10.1109/IVWorkshops54471.2021.9669218}, pages = {236 -- 242}, year = {2021}, abstract = {In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine.}, language = {en} } @incollection{LeiseAltherr2021, author = {Leise, Philipp and Altherr, Lena}, title = {Experimental evaluation of resilience metrics in a fluid system}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {442 -- 447}, year = {2021}, language = {en} } @incollection{AltherrLeisePfetschetal.2021, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Optimal design of resilient technical systems on the example of water supply systems}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {429 -- 433}, year = {2021}, language = {en} } @incollection{AltherrLeise2021, author = {Altherr, Lena and Leise, Philipp}, title = {Resilience as a concept for mastering uncertainty}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78353-2}, doi = {10.1007/978-3-030-78354-9}, pages = {412 -- 417}, year = {2021}, language = {en} } @article{Golland2021, author = {Golland, Alexander}, title = {Datenschutzkonforme Test-, Impf- und Genesungskontrollen in Betrieben der Privatwirtschaft}, series = {DSB Datenschutz-Berater}, volume = {45}, journal = {DSB Datenschutz-Berater}, number = {5}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, issn = {0170-7256}, pages = {158 -- 160}, year = {2021}, language = {de} } @article{Golland2021, author = {Golland, Alexander}, title = {Cookies \& Co. - trotz neuem Gesetz alte Probleme f{\"u}r Website-Betreiber. Anpassung des deutschen Rechts durch das TTDSG an unionsrechtliche Vorgaben zum 1.12.2021}, series = {NWB Steuer- und Wirtschaftsrecht}, volume = {2021}, journal = {NWB Steuer- und Wirtschaftsrecht}, number = {25}, publisher = {NWB-Verlag}, address = {Herne}, issn = {0028-3460}, pages = {1818 -- 1825}, year = {2021}, language = {de} } @article{Golland2021, author = {Golland, Alexander}, title = {Neuregelungen zum Datenschutz: Ein Update f{\"u}r Website-Betreiber. Reform des Telekommunikations- und Telemedienrechts verabschiedet}, series = {NWB Rechnungswesen - BBK}, journal = {NWB Rechnungswesen - BBK}, number = {14}, isbn = {0340-9848}, pages = {672 -- 674}, year = {2021}, language = {de} } @article{Golland2021, author = {Golland, Alexander}, title = {Anforderungen an Transfer Impact Assessments bei Datentransfers in unsichere Drittl{\"a}nder}, series = {DSB Datenschutz-Berater}, volume = {45}, journal = {DSB Datenschutz-Berater}, number = {7-8}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, isbn = {0170-7256}, pages = {229 -- 231}, year = {2021}, language = {de} } @article{Golland2021, author = {Golland, Alexander}, title = {Das Telekommunikation-Telemedien-Datenschutzgesetz. Cookies und PIMS als Herausforderungen f{\"u}r Website-Betreiber}, series = {NJW Neue Juristische Wochenschrift}, journal = {NJW Neue Juristische Wochenschrift}, number = {31}, editor = {Ewer, Wolfgang and Hamm, Rainer and Karpenstein, Ulrich and Oberth{\"u}r, Nathalie and Herchen, Hilke and Br{\"a}utigam, Peter}, publisher = {Beck}, address = {M{\"u}nchen}, issn = {0341-1915}, pages = {2238 -- 2243}, year = {2021}, language = {de} } @inproceedings{EnglhardWeberArent2021, author = {Englhard, Markus and Weber, Tobias and Arent, Jan-Christoph}, title = {Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization}, series = {Proceedings of SAMPE Europe Conference 2021}, booktitle = {Proceedings of SAMPE Europe Conference 2021}, pages = {8 Seiten}, year = {2021}, abstract = {A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31\% using the proposed methodology.}, language = {en} }