@article{FunkeReckerBosschaertsetal.2011, author = {Funke, Harald and Recker, E. and Bosschaerts, W. and Boonen, Q. and B{\"o}rner, Sebastian}, title = {Parametrical study of the „Micromix" hydrogen combustion principle}, series = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, journal = {10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011}, year = {2011}, language = {en} } @book{Havermann2001, author = {Havermann, Marc}, title = {Particle image velocimetry (PIV) applied to high-speed shock tunnel flows / 23rd International Symposium on Shock Waves, Fort Worth/TX, USA, July 22 - 27, 2001. Institut Franco-Allemand de Recherches de Saint-Louis. Havermann, M. ...}, publisher = {ISL}, address = {Saint-Louis}, pages = {8 S. : Ill., graph. Darst.}, year = {2001}, language = {en} } @article{HavermannHaertigReyetal.2002, author = {Havermann, Marc and Haertig, J. and Rey, C. and George, A.}, title = {Particle image velocimetry in mach 3.5 and 4.5 shock-tunnel flows / Haertig, J. ; Havermann, M. ; Rey, C. ; George, A.}, series = {AIAA journal. 40 (2002), H. 6}, journal = {AIAA journal. 40 (2002), H. 6}, publisher = {-}, isbn = {0001-1452}, pages = {1056 -- 1060}, year = {2002}, language = {en} } @misc{ReiswichBrandtCzupalla2019, author = {Reiswich, Martin and Brandt, Hannes and Czupalla, Markus}, title = {Passive thermal control by integration of phase change material into additively manufactured structures}, series = {E2. 47th Student conference}, journal = {E2. 47th Student conference}, year = {2019}, abstract = {Optical Instruments require an extremely stable thermal surrounding to prevent loss of data quality by misalignments of the instrument components resulting from material deformation due to temperature f luctuations (e.g. from solar intrusion). Phase Change Material (PCM) can be applied as a thermal damper to achieve a more uniform temperature distribution. The challenge of this method is, among others, the integration of PCM into affected areas. If correctly designed, incoming heat is latently absorbed during phase change of the PCM, i.e. the temperature of a structure remains almost constant. In a cold phase, the heat during phase change is released again latently until the PCM returns to its original state of aggregation. Thus, the structure is thermally stabilized. At FH Aachen- University of Applied Sciences research is conducted to apply PCM directly into the structures of affected components (baffles, optical benches, electronic boxes, etc.). Through the application of Additive Manufacturing, the necessary voids are directly printed into these structures and filled later with PCM. Additive Manufacturing enables complex structures that would not have been possible with conservative manufacturing methods. A corresponding Breadboard was developed and manufactured by Selective Laser Melting (SLM). The current state of research includes the handling and analysis of the Breadboard, tests and a correlation of the thermal model. The results have shown analytically and practically that it is possible to use PCM as an integral part of the structure as a thermal damper. The results serve as a basis for the further development of the technology, which should maximize performance and enable the integration of PCM into much more complex structures.}, language = {en} } @article{SpietzSproewitzSeefeldtetal.2021, author = {Spietz, Peter and Spr{\"o}witz, Tom and Seefeldt, Patric and Grundmann, Jan Thimo and Jahnke, Rico and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Reershemius, Siebo and Renger, Thomas and Ruffer, Michael and Sasaki, Kaname and Sznajder, Maciej and T{\´o}th, Norbert and Ceriotti, Matteo and Dachwald, Bernd and Macdonald, Malcolm and McInnes, Colin and Seboldt, Wolfgang and Quantius, Dominik and Bauer, Waldemar and Wiedemann, Carsten and Grimm, Christian D. and Hercik, David and Ho, Tra-Mi and Lange, Caroline and Schmitz, Nicole}, title = {Paths not taken - The Gossamer roadmap's other options}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.044}, pages = {2912 -- 2956}, year = {2021}, language = {en} } @article{ScholzRomagnoliDachwaldetal.2011, author = {Scholz, Christina and Romagnoli, Daniele and Dachwald, Bernd and Theil, Stephan}, title = {Performance analysis of an attitude control system for solar sails using sliding masses}, series = {Advances in Space Research}, volume = {48}, journal = {Advances in Space Research}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, pages = {1822 -- 1835}, year = {2011}, language = {en} } @article{HavermannBeylich1997, author = {Havermann, Marc and Beylich, A. E.}, title = {Performance and Limitations of the Laser-Induced Fluorescence Measurement Technique and the Established Experimental Methods for the Study of Supersonic Mixing / Havermann, M. ; Beylich, A. E.}, series = {International Journal of heat and technology. 15 (1997), H. 2}, journal = {International Journal of heat and technology. 15 (1997), H. 2}, publisher = {-}, pages = {3 -- 10}, year = {1997}, language = {en} } @misc{FeldmannFranckeEspeetal.2022, author = {Feldmann, Marco and Francke, Gero and Espe, Clemes and Chen, Qian and Baader, Fabian and Boxberg, Marc S. and Sustrate, Anna-Marie and Kowalski, Julia and Dachwald, Bernd}, title = {Performance data of an ice-melting probe from field tests in two different ice environments}, doi = {10.5281/zenodo.6094866}, year = {2022}, abstract = {This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters).}, language = {en} } @inproceedings{DachwaldSeboldtHaeusler2002, author = {Dachwald, Bernd and Seboldt, Wolfgang and H{\"a}usler, Bernd}, title = {Performance requirements for near-term interplanetary solar sailcraft missions}, series = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, booktitle = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, pages = {9 Seiten}, year = {2002}, abstract = {Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions.}, language = {en} } @incollection{RoethPielen2018, author = {R{\"o}th, Thilo and Pielen, Michael}, title = {Personal Public Vehicle - ein urbanes Fahrzeugkonzept f{\"u}r die „Shared Mobility" der Zukunft}, series = {Karosseriebautage Hamburg 2018, 16. ATZ-Fachtagung}, booktitle = {Karosseriebautage Hamburg 2018, 16. ATZ-Fachtagung}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-22038-9_13}, pages = {189 -- 199}, year = {2018}, abstract = {Die urbane Mobilit{\"a}t ist im Wandel und insbesondere neue innovative Gesch{\"a}ftsmodelle werden einen wesentlichen Teil zur L{\"o}sung von k{\"u}nftigen Mobilit{\"a}tsbed{\"u}rfnissen beitragen. Die sogenannte „Shared Mobility" gilt aktuell neben der Elektrifizierung des Antriebes und autonomem Fahrzeugtechnologien als einer der wichtigsten Trendthemen in der Automobilindustrie. Neue Mobilit{\"a}tsdienstleistungen verlangen dabei verst{\"a}rkt auch neue Fahrzeugkonzepte.}, language = {de} }