@article{LuftBremenLuft2023, author = {Luft, Angela and Bremen, Sebastian and Luft, Nils}, title = {A cost/benefit and flexibility evaluation framework for additive technologies in strategic factory planning}, series = {Processes}, volume = {11}, journal = {Processes}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr11071968}, pages = {Artikel 1968}, year = {2023}, abstract = {There is a growing demand for more flexibility in manufacturing to counter the volatility and unpredictability of the markets and provide more individualization for customers. However, the design and implementation of flexibility within manufacturing systems are costly and only economically viable if applicable to actual demand fluctuations. To this end, companies are considering additive manufacturing (AM) to make production more flexible. This paper develops a conceptual model for the impact quantification of AM on volume and mix flexibility within production systems in the early stages of the factory-planning process. Together with the model, an application guideline is presented to help planners with the flexibility quantification and the factory design process. Following the development of the model and guideline, a case study is presented to indicate the potential impact additive technologies can have on manufacturing flexibility Within the case study, various scenarios with different production system configurations and production programs are analyzed, and the impact of the additive technologies on volume and mix flexibility is calculated. This work will allow factory planners to determine the potential impacts of AM on manufacturing flexibility in an early planning stage and design their production systems accordingly.}, language = {en} } @article{PfaffBabilon2023, author = {Pfaff, Raphael and Babilon, Katharina}, title = {Railway Challenge - moderne Auflage der Rainhill Trials?}, series = {Eisenbahntechnische Rundschau : ETR ; Impulsgeber f{\"u}r das System Bahn}, volume = {2023}, journal = {Eisenbahntechnische Rundschau : ETR ; Impulsgeber f{\"u}r das System Bahn}, number = {4}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {55 -- 58}, year = {2023}, abstract = {Die IMechE Railway Challenge wird j{\"a}hrlich in Stapleford, Großbritannien ausgetragen. Im Rahmen der Challenge entwickeln und bauen Studierende eine Lokomotive und vergleichen sich in verschiedenen Disziplinen, darunter eine automatisierte Zielbremsung, optimale Energier{\"u}ckgewinnung beim Bremsen und minimale Ger{\"a}uschemissionen. Neben diesen und weiteren technischen Wettbewerbsdisziplinen treten die Fahrzeuge und die Teams auch in nicht-technischen Disziplinen wie einer Business Case Challenge an.}, language = {de} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Carsten and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @article{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results}, series = {International Journal of Human-Computer Studies}, volume = {165}, journal = {International Journal of Human-Computer Studies}, number = {Art. No. 102854}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1071-5819}, doi = {10.1016/j.ijhcs.2022.102854}, year = {2022}, abstract = {Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.}, language = {en} } @article{PfaffEnningSutter2022, author = {Pfaff, Raphael and Enning, Manfred and Sutter, Stefan}, title = {A risk‑based approach to automatic brake tests for rail freight service: incident analysis and realisation concept}, series = {SN Applied Sciences}, volume = {4}, journal = {SN Applied Sciences}, number = {4}, publisher = {Springer}, address = {Cham}, issn = {2523-3971}, doi = {10.1007/s42452-022-05007-x}, pages = {1 -- 14}, year = {2022}, abstract = {This study reviews the practice of brake tests in freight railways, which is time consuming and not suitable to detect certain failure types. Public incident reports are analysed to derive a reasonable brake test hardware and communication architecture, which aims to provide automatic brake tests at lower cost than current solutions. The proposed solutions relies exclusively on brake pipe and brake cylinder pressure sensors, a brake release position switch as well as radio communication via standard protocols. The approach is embedded in the Wagon 4.0 concept, which is a holistic approach to a smart freight wagon. The reduction of manual processes yields a strong incentive due to high savings in manual labour and increased productivity.}, language = {en} } @article{EngemannCoenenDawaretal.2021, author = {Engemann, Heiko and C{\"o}nen, Patrick and Dawar, Harshal and Du, Shengzhi and Kallweit, Stephan}, title = {A robot-assisted large-scale inspection of wind turbine blades in manufacturing using an autonomous mobile manipulator}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199271}, pages = {1 -- 22}, year = {2021}, abstract = {Wind energy represents the dominant share of renewable energies. The rotor blades of a wind turbine are typically made from composite material, which withstands high forces during rotation. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing. The automation of inspection processes has a great potential to increase the overall productivity and to create a consistent reliable database for each individual rotor blade. The focus of this paper is set on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator. The main innovations include a novel path planning strategy for zone-based navigation, which enables an intuitive right-hand or left-hand driving behavior in a shared human-robot workspace. In addition, we introduce a new method for surface orthogonal motion planning in connection with large-scale structures. An overall execution strategy controls the navigation and manipulation processes of the long-running inspection task. The implemented concepts are evaluated in simulation and applied in a real-use case including the tip of a rotor blade form.}, language = {en} } @article{ZabirovSchleserBucherer2021, author = {Zabirov, Alexander and Schleser, Markus and Bucherer, Sebastian}, title = {F{\"u}ge- und Dichtkonzept f{\"u}r einen Leichtbauverbrennungsmotor}, series = {adh{\"a}sion KLEBEN \& DICHTEN}, volume = {65}, journal = {adh{\"a}sion KLEBEN \& DICHTEN}, number = {11}, publisher = {Springer Nature}, address = {Cham}, issn = {2192-8681}, doi = {10.1007/s35145-021-0531-5}, pages = {12 -- 19}, year = {2021}, language = {de} } @article{BraunChengDoweyetal.2021, author = {Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Performance evaluation of skill-based order-assignment in production environments with multi-agent systems}, series = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, journal = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, number = {Early Access}, publisher = {IEEE}, address = {New York}, issn = {2687-9735}, doi = {10.1109/JESTIE.2021.3108524}, year = {2021}, abstract = {The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models.}, language = {en} } @article{KaschSchmidtJahnetal.2021, author = {Kasch, Susanne and Schmidt, Thomas and Jahn, Simon and Eichler, Fabian and Thurn, Laura and Bremen, Sebastian}, title = {L{\"o}sungsans{\"a}tze und Verfahrenskonzepte zum Laserstrahlschmelzen von Glas}, series = {Schweissen und Schneiden}, volume = {73}, journal = {Schweissen und Schneiden}, number = {Heft 1-2}, publisher = {DVS Verlag}, address = {D{\"u}sseldorf}, isbn = {0036-7184}, pages = {32 -- 39}, year = {2021}, language = {de} } @article{EngemannDuKallweitetal.2020, author = {Engemann, Heiko and Du, Shengzhi and Kallweit, Stephan and C{\"o}nen, Patrick and Dawar, Harshal}, title = {OMNIVIL - an autonomous mobile manipulator for flexible production}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {24, art. no. 7249}, publisher = {MDPI}, address = {Basel}, isbn = {1424-8220}, doi = {10.3390/s20247249}, pages = {1 -- 30}, year = {2020}, language = {en} }