@article{MourzinaMaiPoghossianetal.2003, author = {Mourzina, Y. and Mai, T. and Poghossian, Arshak and Ermolenko, Y. and Yoshinobu, T. and Vlasov, Y. and Iwasaki, H. and Sch{\"o}ning, Michael Josef}, title = {K+-selective field-effect sensors as transducers for bioelectronic applications}, series = {Electrochimica Acta. 48 (2003), H. 20-22}, journal = {Electrochimica Acta. 48 (2003), H. 20-22}, isbn = {0013-4686}, pages = {3333 -- 3339}, year = {2003}, language = {en} } @article{MourzinaYoshinobuErmelenkoetal.2002, author = {Mourzina, Y. and Yoshinobu, T. and Ermelenko, Y. and Furuichi, K. and Vlasov, Y. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Technology of photocurable membranes for ion sensors based on laser scanned semiconductor transducer (LSST)}, series = {Book of abstracts / ed. by J. Saneistr.}, journal = {Book of abstracts / ed. by J. Saneistr.}, publisher = {Czech Technical University, Faculty of Electrical Engineering, Department of Measurement}, address = {Prague}, isbn = {80-01-02576-4}, pages = {254 -- 257}, year = {2002}, language = {en} } @article{MourzinaSchoeningSchubertetal.2000, author = {Mourzina, Y.G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and Legin, A. V. and Vlasov, Y. G. and Kordos, P. and L{\"u}th, H.}, title = {A new thin film Pb microsensor based on chalcogenide glasses}, series = {Sensors and Actuators B. 71 (2000), H. 1-2}, journal = {Sensors and Actuators B. 71 (2000), H. 1-2}, isbn = {0925-4005}, pages = {13 -- 18}, year = {2000}, language = {en} } @article{MourzinaSchubertZanderetal.2001, author = {Mourzina, Yu. G. and Schubert, J and Zander, W. and Legin, A. and Vlasov, Y. G. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {251 -- 263}, year = {2001}, language = {en} } @article{MourzinaSchoeningSchubertetal.2000, author = {Mourzina, Yu.G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and Legin, A. and Vlasov, Y. G. and L{\"u}th, H.}, title = {Thin film microsensors for fast heavy metal analysis}, series = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, journal = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, publisher = {MIC, Mikroelektronik Centret}, address = {Lyngby, Denmark}, isbn = {87-89935-50-0}, pages = {839 -- 840}, year = {2000}, language = {en} } @article{MuckWangJacobsetal.2004, author = {Muck, A. and Wang, J. and Jacobs, M. and Chen, G. and Chatrathi, M. P. and Jurka, V. and Vyborny, Z. and Spillmann, S. D. and Sridharan, G. and Sch{\"o}ning, Michael Josef}, title = {Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding}, series = {Analytical Chemistry. 76 (2004), H. 8}, journal = {Analytical Chemistry. 76 (2004), H. 8}, isbn = {0003-2700}, pages = {2290 -- 2297}, year = {2004}, language = {en} } @article{MuribGrinsvenGrietenetal.2013, author = {Murib, M. S. and Grinsven, B. van and Grieten, L. and Janssens, S. D. and Vermeeren, V. and Eersels, K. and Broeders, J. and Ameloot, M. and Michiels, L. and Ceuninck, W. De and Haenen, K. and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Electronic monitoring of chemical DNA denaturation on nanocrystalline diamond electrodes with different molarities and flow rates}, series = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, journal = {Physica Status Solidi (A). Vol. 210 (2013), iss. 5}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {0031-8965}, pages = {911 -- 917}, year = {2013}, language = {en} } @article{MuribYeapEurlingsetal.2016, author = {Murib, M. S. and Yeap, W. S. and Eurlings, Y. and Grinsven, B. van and Boyen, H.-G. and Conings, B. and Michiels, L. and Ameloot, M. and Carleer, R. and Warmer, J. and Kaul, P. and Haenen, K. and Sch{\"o}ning, Michael Josef and Ceuninck, W. de and Wagner, P.}, title = {Heat-transfer based characterization of DNA on synthetic sapphire chips}, series = {Sensors and Actuators B: Chemical}, volume = {230}, journal = {Sensors and Actuators B: Chemical}, number = {230}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.02.027}, pages = {260 -- 271}, year = {2016}, abstract = {In this study, we show that synthetic sapphire (Al₂O₃), an established implant material, can also serve as a platform material for biosensors comparable to nanocrystalline diamond. Sapphire chips, beads, and powder were first modified with (3-aminopropyl) triethoxysilane (APTES), followed by succinic anhydride (SA), and finally single-stranded probe DNA was EDC coupled to the functionalized layer. The presence of the APTES-SA layer on sapphire powders was confirmed by thermogravimetric analyis and Fourier-transform infrared spectroscopy. Using planar sapphire chips as substrates and X-ray photoelectron spectroscopy (XPS) as surface-sensitive tool, the sequence of individual layers was analyzed with respect to their chemical state, enabling the quantification of areal densities of the involved molecular units. Fluorescence microscopy was used to demonstrate the hybridization of fluorescently tagged target DNA to the probe DNA, including denaturation- and re-hybridization experiments. Due to its high thermal conductivity, synthetic sapphire is especially suitable as a chip material for the heat-transfer method, which was employed to distinguish complementary- and non-complementary DNA duplexes containing single-nucleotide polymorphisms. These results indicate that it is possible to detect mutations electronically with a chemically resilient and electrically insulating chip material.}, language = {en} } @article{MuribYeapMartensetal.2015, author = {Murib, M. S. and Yeap, W. S. and Martens, D. and Liu, X. and Bienstman, P. and Fahlman, M. and Sch{\"o}ning, Michael Josef and Michiels, L. and Haenen, K. and Serpeng{\"u}zel, A. and Wagner, Patrick}, title = {Photonic studies on polymer-coated sapphire-spheres : a model system for biological ligands}, series = {Sensors and actuators A: Physical}, volume = {222}, journal = {Sensors and actuators A: Physical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3069 (E-Journal); 0924-4247 (Print)}, doi = {10.1016/j.sna.2014.11.024}, pages = {212 -- 219}, year = {2015}, abstract = {In this study we show an optical biosensor concept, based on elastic light scattering from sapphire microspheres. Transmitted and elastic scattering intensity of the microspheres (radius 500 μm, refractive index 1.77) on an optical fiber half coupler is analyzed at 1510 nm. The 0.43 nm angular mode spacing of the resonances is comparable to the angular mode spacing value estimated using the optical size of the microsphere. The spectral linewidths of the resonances are in the order of 0.01 nm, which corresponds to quality factors of approximately 105. A polydopamine layer is used as a functionalizing agent on sapphire microspherical resonators in view of biosensor implementation. The varying layer thickness on the microsphere is determined as a function of the resonance wavelength shift. It is shown that polymer functionalization has a minor effect on the quality factor. This is a promising step toward the development of an optical biosensor.}, language = {en} } @article{MuribTranCeunincketal.2012, author = {Murib, Mohammed S. and Tran, Anh Quang and Ceuninck, Ward de and Sch{\"o}ning, Michael Josef and Nesladek, Milos and Serpeng{\"u}zel, Ali and Wagner, Patrick}, title = {Analysis of an optical biosensor based on elastic light scattering from diamond-, glass-, and sapphire microspheres}, series = {Physica Status Solidi A}, volume = {209}, journal = {Physica Status Solidi A}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100795}, pages = {1804 -- 1810}, year = {2012}, abstract = {Deoxyribonucleic acid (DNA) and protein recognition are now standard tools in biology. In addition, the special optical properties of microsphere resonators expressed by the high quality factor (Q-factor) of whispering gallery modes (WGMs) or morphology dependent resonances (MDRs) have attracted the attention of the biophotonic community. Microsphere-based biosensors are considered as powerful candidates to achieve label-free recognition of single molecules due to the high sensitivity of their WGMs. When the microsphere surface is modified with biomolecules, the effective refractive index and the effective size of the microsphere change resulting in a resonant wavelength shift. The transverse electric (TE) and the transverse magnetic (TM) elastic light scattering intensity of electromagnetic waves at 600 and 1400 nm are numerically calculated for DNA and unspecific binding of proteins to the microsphere surface. The effect of changing the optical properties was studied for diamond (refractive index 2.34), glass (refractive index 1.50), and sapphire (refractive index 1.75) microspheres with a 50 µm radius. The mode spacing, the linewidth of WGMs, and the shift of resonant wavelength due to the change in radius and refractive index, were analyzed by numerical simulations. Preliminary results of unspecific binding of biomolecules are presented. The calculated shift in WGMs can be used for biomolecules detection.}, language = {en} }