@inproceedings{BaeckerSchusserLeinhosetal.2014, author = {B{\"a}cker, Matthias and Schusser, Sebastian and Leinhos, Marcel and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Sensor system for the monitoring of degradation processes of biodegradable biopolymers}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {D{\"u}sseldorf}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 4}, year = {2014}, language = {en} } @article{BaeckerSchusserPoghossianetal.2013, author = {B{\"a}cker, Matthias and Schusser, Sebastian and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Degradationsverhalten bioabbaubarer Polymere : siliziumbasierte Sensorik zur {\"U}berwachung}, series = {GIT Labor-Fachzeitschrift}, journal = {GIT Labor-Fachzeitschrift}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0016-3538}, pages = {32 -- 33}, year = {2013}, language = {de} } @article{BaeckerSchusserPoghossianetal.2014, author = {B{\"a}cker, Matthias and Schusser, Sebastian and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Multi-Parametererfassung mit siliziumbasiertem Sensorchip: Aus Drei mach Eins}, series = {GIT Labor-Fachzeitschrift}, journal = {GIT Labor-Fachzeitschrift}, number = {2}, publisher = {Wiley}, issn = {0016-3538}, pages = {28 -- 30}, year = {2014}, language = {de} } @article{ChristiaensAbouzarPoghossianetal.2007, author = {Christiaens, P. and Abouzar, Maryam H. and Poghossian, Arshak and Wagner, Torsten and Bijnens, N. and Williams, O. A. and Daenen, M. and Haenen, K. and Douth{\´e}ret, O. and Haen, J. d´ and Mekhalif, Z. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {pH sensitivity of nanocrystalline diamond films}, series = {Physica status solidi (A). 204 (2007), H. 9}, journal = {Physica status solidi (A). 204 (2007), H. 9}, isbn = {0031-8965}, pages = {2925 -- 2930}, year = {2007}, language = {en} } @article{ChristiaensAbouzarPoghossianetal.2007, author = {Christiaens, P. and Abouzar, Maryam H. and Poghossian, Arshak and Wagner, Torsten and Bijnens, N. and Williams, O. A. and Daenen, M. and Haenen, K. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Nanocrystalline diamond-based field-effect capacitive pH sensor}, series = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, journal = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, publisher = {IEEE}, address = {Piscataway}, isbn = {1-4244-0841-5}, pages = {1891 -- 1894}, year = {2007}, language = {en} } @article{CornelisGivanoudiYongabietal.2019, author = {Cornelis, Peter and Givanoudi, Stella and Yongabi, Derick and Iken, Heiko and Duw{\´e}, Sam and Deschaume, Olivier and Robbens, Johan and Dedecker, Peter and Bartic, Carmen and W{\"u}bbenhorst, Michael and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method}, series = {Biosensors and Bioelectronics}, volume = {136}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.026}, pages = {97 -- 105}, year = {2019}, language = {en} } @article{DantismTakenagaWagneretal.2015, author = {Dantism, S. and Takenaga, S. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.647}, pages = {384 -- 387}, year = {2015}, abstract = {LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution.}, language = {en} } @article{DantismRoehlenDahmenetal.2020, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Dahmen, Markus and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth}, series = {Sensors and Actuators B: Chemical}, volume = {320}, journal = {Sensors and Actuators B: Chemical}, number = {Art. 128232}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.128232}, year = {2020}, abstract = {As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated.}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, pages = {Artikel 111332}, year = {2019}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Artikel 4692}, year = {2019}, abstract = {Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.}, language = {en} }