@article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution}, series = {Sensors and actuators B: Chemical}, volume = {204}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.08.016}, pages = {659 -- 665}, year = {2014}, abstract = {As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems.}, language = {en} } @article{RiedelKartchemnikSchoeningetal.2014, author = {Riedel, Marc and Kartchemnik, Julia and Sch{\"o}ning, Michael Josef and Lisdat, Fred}, title = {Impedimetric DNA detection - steps forward to sensorial application}, series = {Analytical chemistry}, volume = {86 (2014)}, journal = {Analytical chemistry}, number = {15}, publisher = {ACS Publications}, address = {Columbus}, issn = {1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print)}, doi = {10.1021/ac501800q}, pages = {7867 -- 7874}, year = {2014}, abstract = {This study describes a label-free impedimetric sensor based on short ssDNA recognition elements for the detection of hybridization events. We concentrate on the elucidation of the influence of target length and recognition sequence position on the sensorial performance. The impedimetric measurements are performed in the presence of the redox system ferri-/ferrocyanide and show an increase in charge transfer resistance upon hybridization of ssDNA to the sensor surface. Investigations on the impedimetric signal stability demonstrate a clear influence of the buffers used during the sensor preparation and the choice of the passivating mercaptoalcanol compound. A stable sensor system has been developed, enabling a reproducible detection of 25mer target DNA in the low nanomolar range. After hybridization, a sensor regeneration can be reached with deionized water by adjustment of effective convection conditions, ensuring a sensor reusability. By investigations of longer targets with overhangs exposed to the solution, we can demonstrate applicability of the impedimetric detection for longer ssDNA. However, a decreasing charge transfer resistance change (ΔRct) is found by extending the overhang. As a strategy to increase the impedance change for longer target strands, the position of the recognition sequence can be designed in a way that a small overhang is exposed to the electrode surface. This is found to result in an increase in the relative Rct change. These results suggest that DNA and consequently negative charge near the electrode possess a larger impact on the impedimetric signal than DNA further away.}, language = {en} } @article{WagnerDollSchoening2014, author = {Wagner, Patrick and Doll, Theodor and Sch{\"o}ning, Michael Josef}, title = {Engineering of functional interfaces / Patrick Wagner ; Theodor Doll ; Michael J. Sch{\"o}ning (eds.)}, series = {Physica status solidi (A) : Applications and materials science}, volume = {211}, journal = {Physica status solidi (A) : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Book); 1862-6319 (E-Book); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201470241}, pages = {1339 -- 1339}, year = {2014}, language = {en} } @incollection{PoghossianWeilandSchoening2014, author = {Poghossian, Arshak and Weiland, Maryam and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing}, series = {Multisensor system for chemical analysis : materials and sensors}, booktitle = {Multisensor system for chemical analysis : materials and sensors}, editor = {Lvova, Larisa and Kirsanov, Dmitry and di Natale, Corrado and Legin, Audrey}, edition = {1}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4411-15-8 ; 978-981-4411-16-5}, doi = {10.1201/b15491-11}, pages = {333 -- 373}, year = {2014}, abstract = {An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events.}, language = {en} } @article{GuoSekiMiyamotoetal.2014, author = {Guo, Yuanyuan and Seki, Kosuke and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution}, series = {Applied physics express : APEX}, volume = {7}, journal = {Applied physics express : APEX}, number = {6}, publisher = {IOP}, address = {Bristol}, issn = {1882-0786 (E-Journa); 1882-0778 (Print)}, doi = {10.7567/APEX.7.067301}, pages = {067301-4}, year = {2014}, abstract = {A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) is proposed to achieve a higher spatial resolution of chemical images. The proposed method employs a combined light source that consists of a modulated light probe, which generates the alternating photocurrent signal, and a ring of constant illumination surrounding it. The constant illumination generates a sheath of carriers with increased concentration which suppresses the spread of photocarriers by enhanced recombination. A device simulation was carried out to verify the effect of constant illumination on the spatial resolution, which demonstrated that a higher spatial resolution can be obtained.}, language = {en} } @techreport{SchoeningSelmerBaumann2012, author = {Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Baumann, Marcus}, title = {Schlussbericht zum Projekt "Bio-LAPS" : Optimierung des Betriebs eines Biogasfermenters mit Hilfe eines Feldeffekt-Biosensors auf Basis eines lichtadressierbaren potentiometrischen Sensors (LAPS) : Laufzeit: 01.09.2008 bis 31.01.2012 : F{\"o}rderkennzeichen 07NR264 bzw.22026407}, publisher = {BMELV}, address = {Berlin}, pages = {44 S.}, year = {2012}, language = {de} } @article{SchoeningBiselliSelmeretal.2012, author = {Sch{\"o}ning, Michael Josef and Biselli, Manfred and Selmer, Thorsten and {\"O}hlschl{\"a}ger, Peter and Baumann, Marcus and F{\"o}rster, Arnold and Poghossian, Arshak}, title = {Forschung „zwischen" den Disziplinen: das Institut f{\"u}r Nano- und Biotechnologien}, series = {Analytik news : das Online-Labormagazin f{\"u}r Labor und Analytik}, volume = {Publ. online}, journal = {Analytik news : das Online-Labormagazin f{\"u}r Labor und Analytik}, publisher = {Dr. Beyer Internet-Beratung}, address = {Ober-Ramstadt}, pages = {11 Seiten}, year = {2012}, abstract = {"Biologie trifft Mikroelektronik", das Motto des Instituts f{\"u}r Nano- und Biotechnologien (INB) an der FH Aachen, unterstreicht die zunehmende Bedeutung interdisziplin{\"a}r gepr{\"a}gter Forschungsaktivit{\"a}ten. Der thematische Zusammenschluss grundst{\"a}ndiger Disziplinen, wie die Physik, Elektrotechnik, Chemie, Biologie sowie die Materialwissenschaften, l{\"a}sst neue Forschungsgebiete entstehen, ein herausragendes Beispiel hierf{\"u}r ist die Nanotechnologie: Hier werden neue Werkstoffe und Materialien entwickelt, einzelne Nanopartikel oder Molek{\"u}le und deren Wechselwirkung untersucht oder Schichtstrukturen im Nanometerbereich aufgebaut, die neue und vorher nicht bekannte Eigenschaften hervorbringen. Vor diesem Hintergrund b{\"u}ndelt das im Jahre 2006 gegr{\"u}ndete INB die an der FH Aachen vorhandenen Kompetenzen von derzeit insgesamt sieben Laboratorien auf den Gebieten der Halbleitertechnik und Nanoelektronik, Nanostrukturen und DNA-Sensorik, der Chemo- und Biosensorik, der Enzymtechnologie, der Mikrobiologie und Pflanzenbiotechnologie, der Zellkulturtechnik, sowie der Roten Biotechnologie synergetisch. In der Nano- und Biotechnologie steckt außergew{\"o}hnliches Potenzial! Nicht zuletzt deshalb stellen sich die Forscher der Herausforderung, in diesem Bereich gemeinsam zu forschen und Schnittstellen zu nutzen, um so bei der Gestaltung neuartiger Ideen und Produkte mitzuwirken, die zuk{\"u}nftig unser allt{\"a}gliches Leben ver{\"a}ndern werden. Im Folgenden werden die verschiedenen Forschungsbereiche kurz zusammenfassend vorgestellt und vorhandene Interaktionen anhand von exemplarisch ausgew{\"a}hlten, aktuellen Forschungsprojekten skizziert.}, language = {de} } @article{PoghossianSchoening2014, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules with field-effect devices for clinical applications}, series = {Electroanalysis}, volume = {26}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109 (E-Journal); 1040-0397 (Print)}, doi = {10.1002/elan.201400073}, pages = {1197 -- 1213}, year = {2014}, abstract = {Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers.}, language = {en} } @article{WuBronderPoghossianetal.2014, author = {Wu, Chunsheng and Bronder, Thomas and Poghossian, Arshak and Werner, Frederik and B{\"a}cker, Matthias and Sch{\"o}ning, Michael Josef}, title = {Label-free electrical detection of DNA with a multi-spot LAPS: First step towards light-addressable DNA chips}, series = {Physica status solidi A : Applications and materials science}, volume = {211}, journal = {Physica status solidi A : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330442}, pages = {1423 -- 1428}, year = {2014}, abstract = {A multi-spot (4 × 4 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure has been applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. Single-stranded probe ssDNA molecules (20 bases) were covalently immobilized onto the silanized SiO2 gate surface. The unspecific adsorption of mismatch ssDNA on the MLAPS gate surface was blocked by bovine serum albumin molecules. To reduce the screening effect and to achieve a high sensor signal, the measurements were performed in a low ionic-strength solution. The photocurrent-voltage (I-V) curves were simultaneously recorded on all 16 spots after each surface functionalization step. Large shifts of I-V curves of 25 mV were registered after the DNA immobilization and hybridization event. In contrast, a small potential shift (∼5 mV) was observed in case of mismatch ssDNA, revealing good specificity of the sensor. The obtained results demonstrate the potential of the MLAPS as promising transducer platform for the multi-spot label-free electrical detection of DNA molecules by their intrinsic molecular charge.}, language = {en} } @article{BaeckerKramerHucketal.2014, author = {B{\"a}cker, Matthias and Kramer, F. and Huck, Christina and Poghossian, Arshak and Bratov, A. and Abramova, N. and Sch{\"o}ning, Michael Josef}, title = {Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties}, series = {Physica Status Solidi (A) - Applications and Materials Science}, volume = {211}, journal = {Physica Status Solidi (A) - Applications and Materials Science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330416}, pages = {1357 -- 1363}, year = {2014}, abstract = {Planar and three-dimensional (3D) interdigitated electrodes (IDE) with electrode digits separated by an insulating barrier of different heights were electrochemically characterized and compared in terms of their sensing properties. Due to the impact of the surface resistance, both types of IDE structures display a non-linear behavior in low-ionic strength solutions. The experimental data were fitted to an electrical equivalent circuit and interpreted taking into account the surface-charge-governed properties. The effect of a charged polyelectrolyte layer electrostatically assembled onto the sensor surface on the surface resistance in solutions with different KCl concentration is studied. In case of the same electrode footprint, 3D-IDEs show a larger cell constant and a higher sensitivity to molecular adsorption than that of planar IDEs. The obtained results demonstrate the potential of 3D-IDEs as a new transducer structure for a direct label-free sensing of charged molecules.}, language = {en} }